No need to spend hours ploughing through endless data - let Spark, one of the fastest big data processing engines available, do the hard work for you.
Key Features:
- Get up and running with Apache Spark and Python
- Integrate Spark with AWS for real-time analytics
- Apply processed data streams to machine learning APIs of Apache Spark
Book Description:
Processing big data in real time is challenging due to scalability, information consistency, and fault-tolerance. This book teaches you how to use Spark to make your overall analytical workflow faster and more efficient. You'll explore all core concepts and tools within the Spark ecosystem, such as Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming.
You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption.
By the end of this book, you'll not only have understood how to use machine learning extensions and structured streams but you'll also be able to apply Spark in your own upcoming big data projects.
What You Will Learn:
- Write your own Python programs that can interact with Spark
- Implement data stream consumption using Apache Spark
- Recognize common operations in Spark to process known data streams
- Integrate Spark streaming with Amazon Web Services (AWS)
- Create a collaborative filtering model with the movielens dataset
- Apply processed data streams to Spark machine learning APIs
Who this book is for:
Data Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Manuel Ignacio Franco Galeano is a computer scientist from Colombia. He works for Fender Musical Instruments as a lead engineer in Dublin, Ireland. He holds a master's degree in computer science from University College, Dublin UCD. His areas of interest and research are music information retrieval, data analytics, distributed systems, and blockchain technologies.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,12 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 4,47 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781789808810
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781789808810_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781789808810
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Big Data Processing with Apache Spark 0.56. Book. Bestandsnummer des Verkäufers BBS-9781789808810
Anzahl: 5 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Processing big data in real-time is challenging due to scalability, information consistency, and fault tolerance. This book shows you how you can use Spark to make your overall analysis workflow faster and more efficient. You ll learn all about the core con. Bestandsnummer des Verkäufers 448332334
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. No need to spend hours ploughing through endless data - let Spark, one of the fastest big data processing engines available, do the hard work for you.Key FeaturesGet up and running with Apache Spark and PythonIntegrate Spark with AWS for real-time analyticsApply processed data streams to machine learning APIs of Apache SparkBook DescriptionProcessing big data in real time is challenging due to scalability, information consistency, and fault-tolerance. This book teaches you how to use Spark to make your overall analytical workflow faster and more efficient. You'll explore all core concepts and tools within the Spark ecosystem, such as Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming.You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption.By the end of this book, you'll not only have understood how to use machine learning extensions and structured streams but you'll also be able to apply Spark in your own upcoming big data projects.What you will learnWrite your own Python programs that can interact with SparkImplement data stream consumption using Apache SparkRecognize common operations in Spark to process known data streamsIntegrate Spark streaming with Amazon Web Services (AWS)Create a collaborative filtering model with the movielens datasetApply processed data streams to Spark machine learning APIsWho this book is forData Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended. Bestandsnummer des Verkäufers LU-9781789808810
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 222. Bestandsnummer des Verkäufers C9781789808810
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. No need to spend hours ploughing through endless data - let Spark, one of the fastest big data processing engines available, do the hard work for you.Key FeaturesGet up and running with Apache Spark and PythonIntegrate Spark with AWS for real-time analyticsApply processed data streams to machine learning APIs of Apache SparkBook DescriptionProcessing big data in real time is challenging due to scalability, information consistency, and fault-tolerance. This book teaches you how to use Spark to make your overall analytical workflow faster and more efficient. You'll explore all core concepts and tools within the Spark ecosystem, such as Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming.You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption.By the end of this book, you'll not only have understood how to use machine learning extensions and structured streams but you'll also be able to apply Spark in your own upcoming big data projects.What you will learnWrite your own Python programs that can interact with SparkImplement data stream consumption using Apache SparkRecognize common operations in Spark to process known data streamsIntegrate Spark streaming with Amazon Web Services (AWS)Create a collaborative filtering model with the movielens datasetApply processed data streams to Spark machine learning APIsWho this book is forData Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended. Bestandsnummer des Verkäufers LU-9781789808810
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - No need to spend hours ploughing through endless data - let Spark, one of the fastest big data processing engines available, do the hard work for you.Key Features: Get up and running with Apache Spark and Python Integrate Spark with AWS for real-time analytics Apply processed data streams to machine learning APIs of Apache SparkBook Description:Processing big data in real time is challenging due to scalability, information consistency, and fault-tolerance. This book teaches you how to use Spark to make your overall analytical workflow faster and more efficient. You'll explore all core concepts and tools within the Spark ecosystem, such as Spark Streaming, the Spark Streaming API, machine learning extension, and structured streaming.You'll begin by learning data processing fundamentals using Resilient Distributed Datasets (RDDs), SQL, Datasets, and Dataframes APIs. After grasping these fundamentals, you'll move on to using Spark Streaming APIs to consume data in real time from TCP sockets, and integrate Amazon Web Services (AWS) for stream consumption.By the end of this book, you'll not only have understood how to use machine learning extensions and structured streams but you'll also be able to apply Spark in your own upcoming big data projects.What You Will Learn: Write your own Python programs that can interact with Spark Implement data stream consumption using Apache Spark Recognize common operations in Spark to process known data streams Integrate Spark streaming with Amazon Web Services (AWS) Create a collaborative filtering model with the movielens dataset Apply processed data streams to Spark machine learning APIsWho this book is for:Data Processing with Apache Spark is for you if you are a software engineer, architect, or IT professional who wants to explore distributed systems and big data analytics. Although you don't need any knowledge of Spark, prior experience of working with Python is recommended. Bestandsnummer des Verkäufers 9781789808810
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 34091297-n
Anzahl: Mehr als 20 verfügbar