Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vijayalakshmi G. V. Mahesh received her BE in Electronics and Communication Engineering from Bangalore University, India in 1999, and M.Tech in Digital Communication and Networking from Visvesvaraya Technological University in 2005 and the Ph.D. degree from the Vellore Institute of Technology, Vellore, India. Currently she is working as an Associate Professor at BMS Institute of Technology and Management, Bangalore, India. She has been in academics for over 19 years and has published her research in various reputed journals and conferences. Dr. Vijayalakshmi is serving as academic editor for various journals. She has edited and published two books " Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments" and " Aiding Forensic Investigation Through Deep Learning and Machine Learning Frameworks" with IGI Global publishers. Her research interests include Machine Learning, Image Processing, Pattern Recognition and Deep learning, Affective computing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,78 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerEUR 5,73 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: dsmbooks, Liverpool, Vereinigtes Königreich
hardcover. Zustand: Very Good. Very Good. book. Bestandsnummer des Verkäufers D7S9-1-M-1799866904-5
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781799866909_new
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781799866909
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781799866909
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. The book highlight concepts, methods, and tools, including convolutional neura. Bestandsnummer des Verkäufers 448342868
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Recent advancements in imaging techniques and image analysis has broadened the horizons for their applications in various domains. Image analysis has become an influential technique in medical image analysis, optical character recognition, geology, remote sensing, and more. However, analysis of images under constrained and unconstrained environments require efficient representation of the data and complex models for accurate interpretation and classification of data. Deep learning methods, with their hierarchical/multilayered architecture, allow the systems to learn complex mathematical models to provide improved performance in the required task. The Handbook of Research on Deep Learning-Based Image Analysis Under Constrained and Unconstrained Environments provides a critical examination of the latest advancements, developments, methods, systems, futuristic approaches, and algorithms for image analysis and addresses its challenges. Highlighting concepts, methods, and tools including convolutional neural networks, edge enhancement, image segmentation, machine learning, and image processing, the book is an essential and comprehensive reference work for engineers, academicians, researchers, and students. Bestandsnummer des Verkäufers 9781799866909
Anzahl: 1 verfügbar