Build machine learning algorithms using graph data and efficiently exploit topological information within your models
Key Features:
Book Description:
Graph Machine Learning will introduce you to a set of tools used for processing network data and leveraging the power of the relation between entities that can be used for predictive, modeling, and analytics tasks.
The first chapters will introduce you to graph theory and graph machine learning, as well as the scope of their potential use.
You'll then learn all you need to know about the main machine learning models for graph representation learning: their purpose, how they work, and how they can be implemented in a wide range of supervised and unsupervised learning applications. You'll build a complete machine learning pipeline, including data processing, model training, and prediction in order to exploit the full potential of graph data.
After covering the basics, you'll be taken through real-world scenarios such as extracting data from social networks, text analytics, and natural language processing (NLP) using graphs and financial transaction systems on graphs. You'll also learn how to build and scale out data-driven applications for graph analytics to store, query, and process network information, and explore the latest trends on graphs.
By the end of this machine learning book, you will have learned essential concepts of graph theory and all the algorithms and techniques used to build successful machine learning applications.
What You Will Learn:
Who this book is for:
This book is for data scientists, data analysts, graph analysts, and graph professionals who want to leverage the information embedded in the connections and relations between data points to boost their analysis and model performance using machine learning. It will also be useful for machine learning developers or anyone who wants to build ML-driven graph databases. A beginner-level understanding of graph databases and graph data is required, alongside a solid understanding of ML basics. You'll also need intermediate-level Python programming knowledge to get started with this book.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Claudio Stamile received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2013 and, in September 2017, he received his joint Ph.D. from KU Leuven (Leuven, Belgium) and Université Claude Bernard Lyon 1 (Lyon, France). During his career, he has developed a solid background in artificial intelligence, graph theory, and machine learning, with a focus on the biomedical field. He is currently a senior data scientist in CGnal, a consulting firm fully committed to helping its top-tier clients implement data-driven strategies and build AI-powered solutions to promote efficiency and support new business models.
Aldo Marzullo received an M.Sc. degree in computer science from the University of Calabria (Cosenza, Italy) in September 2016. During his studies, he developed a solid background in several areas, including algorithm design, graph theory, and machine learning. In January 2020, he received his joint Ph.D. from the University of Calabria and Université Claude Bernard Lyon 1 (Lyon, France), with a thesis entitled Deep Learning and Graph Theory for Brain Connectivity Analysis in Multiple Sclerosis. He is currently a postdoctoral researcher at the University of Calabria and collaborates with several international institutions.
Enrico Deusebio is currently the chief operating officer at CGnal, a consulting firm that helps its top-tier clients implement data-driven strategies and build AI-powered solutions. He has been working with data and large-scale simulations using high-performance facilities and large-scale computing centers for over 10 years, both in an academic and industrial context. He has collaborated and worked with top-tier universities, such as the University of Cambridge, the University of Turin, and the Royal Institute of Technology (KTH) in Stockholm, where he obtained a Ph.D. in 2014. He also holds B.Sc. and M.Sc. degrees in aerospace engineering from Politecnico di Torino.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 4,54 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: medimops, Berlin, Deutschland
Zustand: very good. Gut/Very good: Buch bzw. Schutzumschlag mit wenigen Gebrauchsspuren an Einband, Schutzumschlag oder Seiten. / Describes a book or dust jacket that does show some signs of wear on either the binding, dust jacket or pages. Bestandsnummer des Verkäufers M01800204493-V
Anzahl: 1 verfügbar
Anbieter: ThriftBooks-Dallas, Dallas, TX, USA
Paperback. Zustand: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less 1.5. Bestandsnummer des Verkäufers G1800204493I3N00
Anzahl: 1 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781800204492
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781800204492_new
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Data scientists working with network data will be able to put their knowledge to work with this practical guide to building machine learning algorithms using graph data. The book provides a hands-on approach to implementation and associated methodologies th. Bestandsnummer des Verkäufers 532387499
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781800204492
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781800204492
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Graph Machine Learning: Take graph data to the next level by applying machine learning techniques and algorithms 1.28. Book. Bestandsnummer des Verkäufers BBS-9781800204492
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 43019575
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 100. Bestandsnummer des Verkäufers C9781800204492
Anzahl: Mehr als 20 verfügbar