Verwandte Artikel zu Enhancing Deep Learning with Bayesian Inference: Create...

Enhancing Deep Learning with Bayesian Inference: Create more powerful, robust deep learning systems with Bayesian deep learning in Python - Softcover

 
9781803246888: Enhancing Deep Learning with Bayesian Inference: Create more powerful, robust deep learning systems with Bayesian deep learning in Python

Inhaltsangabe

Develop Bayesian Deep Learning models to help make your own applications more robust.


Key Features:

  • Gain insights into the limitations of typical neural networks
  • Acquire the skill to cultivate neural networks capable of estimating uncertainty
  • Discover how to leverage uncertainty to develop more robust machine learning systems


Book Description:

Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care.

Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios.

By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems.


What You Will Learn:

  • Discern the advantages and disadvantages of Bayesian inference and deep learning
  • Become well-versed with the fundamentals of Bayesian Neural Networks
  • Understand the differences between key BNN implementations and approximations
  • Recognize the merits of probabilistic DNNs in production contexts
  • Master the implementation of a variety of BDL methods in Python code
  • Apply BDL methods to real-world problems
  • Evaluate BDL methods and choose the most suitable approach for a given task
  • Develop proficiency in dealing with unexpected data in deep learning applications


Who this book is for:

This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorinnen und Autoren

Matt Benatan is a Principal Research Scientist at Sonos and a Simon Industrial Fellow at the University of Manchester. His work involves research in robust multimodal machine learning, uncertainty estimation, Bayesian optimization, and scalable Bayesian inference.

Jochem Gietema is an Applied Scientist at Onfido in London where he has developed and deployed several patented solutions related to anomaly detection, computer vision, and interactive data visualisation.

Marian Schneider is an applied scientist in machine learning. His work involves developing and deploying applications in computer vision, ranging from brain image segmentation and uncertainty estimation to smarter image capture on mobile devices.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Gently used. May include previous...
Diesen Artikel anzeigen

EUR 11,56 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

EUR 4,56 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Enhancing Deep Learning with Bayesian Inference: Create...

Beispielbild für diese ISBN

Benatan, Matt, Gietema, Jochem, Schneider, Marian
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Gebraucht Softcover

Anbieter: PAPER CAVALIER UK, London, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: very good. Gently used. May include previous owner's signature or bookplate on the front endpaper, sticker on back and/or remainder mark on text block. Bestandsnummer des Verkäufers 9781803246888-3

Verkäufer kontaktieren

Gebraucht kaufen

EUR 53,60
Währung umrechnen
Versand: EUR 11,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Matt Benatan
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu PAP
Print-on-Demand

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 61,50
Währung umrechnen
Versand: EUR 4,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Benatan, Matt; Gietema, Jochem; Schneider, Marian
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781803246888_new

Verkäufer kontaktieren

Neu kaufen

EUR 60,53
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Matt Benatan
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu PAP
Print-on-Demand

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 65,57
Währung umrechnen
Versand: EUR 0,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Benatan, Matt; Gietema, Jochem; Schneider, Marian
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 58,21
Währung umrechnen
Versand: EUR 8,56
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Benatan, Matt
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Enhancing Deep Learning with Bayesian Inference: Create more powerful, robust deep learning systems with Bayesian deep learning in Python 1.46. Book. Bestandsnummer des Verkäufers BBS-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 57,01
Währung umrechnen
Versand: EUR 10,70
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Matt Benatan
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Paperback / softback
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Bestandsnummer des Verkäufers C9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 67,63
Währung umrechnen
Versand: EUR 6,80
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Matt Benatan, Jochem Gietema, Marian Schneider
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Paperback

Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Develop Bayesian Deep Learning models to help make your own applications more robust.Key FeaturesGain insights into the limitations of typical neural networksAcquire the skill to cultivate neural networks capable of estimating uncertaintyDiscover how to leverage uncertainty to develop more robust machine learning systemsBook DescriptionDeep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know.The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more in how we incorporate model predictions within our applications.Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios.By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems.What you will learnUnderstand advantages and disadvantages of Bayesian inference and deep learningUnderstand the fundamentals of Bayesian Neural NetworksUnderstand the differences between key BNN implementations/approximationsUnderstand the advantages of probabilistic DNNs in production contextsHow to implement a variety of BDL methods in Python codeHow to apply BDL methods to real-world problemsUnderstand how to evaluate BDL methods and choose the best method for a given taskLearn how to deal with unexpected data in real-world deep learning applicationsWho this book is forThis book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. Bestandsnummer des Verkäufers LU-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 73,03
Währung umrechnen
Versand: EUR 2,31
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Matt Benatan, Jochem Gietema, Marian Schneider
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Paperback

Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. Develop Bayesian Deep Learning models to help make your own applications more robust.Key FeaturesGain insights into the limitations of typical neural networksAcquire the skill to cultivate neural networks capable of estimating uncertaintyDiscover how to leverage uncertainty to develop more robust machine learning systemsBook DescriptionDeep learning has an increasingly significant impact on our lives, from suggesting content to playing a key role in mission- and safety-critical applications. As the influence of these algorithms grows, so does the concern for the safety and robustness of the systems which rely on them. Simply put, typical deep learning methods do not know when they don't know.The field of Bayesian Deep Learning contains a range of methods for approximate Bayesian inference with deep networks. These methods help to improve the robustness of deep learning systems as they tell us how confident they are in their predictions, allowing us to take more in how we incorporate model predictions within our applications.Through this book, you will be introduced to the rapidly growing field of uncertainty-aware deep learning, developing an understanding of the importance of uncertainty estimation in robust machine learning systems. You will learn about a variety of popular Bayesian Deep Learning methods, and how to implement these through practical Python examples covering a range of application scenarios.By the end of the book, you will have a good understanding of Bayesian Deep Learning and its advantages, and you will be able to develop Bayesian Deep Learning models for safer, more robust deep learning systems.What you will learnUnderstand advantages and disadvantages of Bayesian inference and deep learningUnderstand the fundamentals of Bayesian Neural NetworksUnderstand the differences between key BNN implementations/approximationsUnderstand the advantages of probabilistic DNNs in production contextsHow to implement a variety of BDL methods in Python codeHow to apply BDL methods to real-world problemsUnderstand how to evaluate BDL methods and choose the best method for a given taskLearn how to deal with unexpected data in real-world deep learning applicationsWho this book is forThis book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. Bestandsnummer des Verkäufers LU-9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 78,29
Währung umrechnen
Versand: EUR 2,31
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Matt Benatan
Verlag: Packt Publishing, 2023
ISBN 10: 180324688X ISBN 13: 9781803246888
Neu Taschenbuch
Print-on-Demand

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Develop Bayesian Deep Learning models to help make your own applications more robust.Key Features:Gain insights into the limitations of typical neural networksAcquire the skill to cultivate neural networks capable of estimating uncertaintyDiscover how to leverage uncertainty to develop more robust machine learning systemsBook Description:Deep learning is revolutionizing our lives, impacting content recommendations and playing a key role in mission- and safety-critical applications. Yet, typical deep learning methods lack awareness about uncertainty. Bayesian deep learning offers solutions based on approximate Bayesian inference, enhancing the robustness of deep learning systems by indicating how confident they are in their predictions. This book will guide you in incorporating model predictions within your applications with care.Starting with an introduction to the rapidly growing field of uncertainty-aware deep learning, you'll discover the importance of uncertainty estimation in robust machine learning systems. You'll then explore a variety of popular Bayesian deep learning methods and understand how to implement them through practical Python examples covering a range of application scenarios.By the end of this book, you'll embrace the power of Bayesian deep learning and unlock a new level of confidence in your models for safer, more robust deep learning systems.What You Will Learn:Discern the advantages and disadvantages of Bayesian inference and deep learningBecome well-versed with the fundamentals of Bayesian Neural NetworksUnderstand the differences between key BNN implementations and approximationsRecognize the merits of probabilistic DNNs in production contextsMaster the implementation of a variety of BDL methods in Python codeApply BDL methods to real-world problemsEvaluate BDL methods and choose the most suitable approach for a given taskDevelop proficiency in dealing with unexpected data in deep learning applicationsWho this book is for:This book will cater to researchers and developers looking for ways to develop more robust deep learning models through probabilistic deep learning. You're expected to have a solid understanding of the fundamentals of machine learning and probability, along with prior experience working with machine learning and deep learning models. Bestandsnummer des Verkäufers 9781803246888

Verkäufer kontaktieren

Neu kaufen

EUR 84,74
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 3 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen