Discover actionable steps to maintain healthy data pipelines to promote data observability within your teams with this essential guide to elevating data engineering practices
In the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization.
This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You'll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you'll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization.
Equipped with the mastery of data observability intricacies, you'll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.
This book is for data engineers, data architects, data analysts, and data scientists who have encountered issues with broken data pipelines or dashboards. Organizations seeking to adopt data observability practices and managers responsible for data quality and processes will find this book especially useful to increase the confidence of data consumers and raise awareness among producers regarding their data pipelines.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Michele Pinto is the Head of Engineering at Kensu. With over 15 years of experience, Michele has a great knack for understanding how data observability and data engineering are closely linked. He started his career as a software engineer and has worked since then in various roles, such as big data engineer, big data architect, head of data and until recently he was a Head of Engineering. He has a great community presence and believes in giving back to the community. He has also been a teacher for Digital Product Management Master TAG Innovation School in Milan, Italy. His collaboration on the book has been prompt, swift, eager, and very invested.
Sammy El Khammal works at Kensu. He started off as a field engineer and worked his way up to the position of product manager. In the past, he has also worked with Mercedes as their Business Development Analyst - Intern. He has also been an O'Reilly teacher for 3 workshops on data quality, lineage monitoring, and data observability. During that time, he provided some brilliant insights, very responsive behaviour, and immense talent and determination.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,36 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 0,63 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781804616024
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781804616024
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781804616024
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781804616024_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Data Observability for Data Engineering: Proactive strategies for ensuring data accuracy and addressing broken data pipelines 0.88. Book. Bestandsnummer des Verkäufers BBS-9781804616024
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47248834-n
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Discover actionable steps to maintain healthy data pipelines to promote data observability within your teams with this essential guide to elevating data engineering practicesKey FeaturesLearn how to monitor your data pipelines in a scalable wayApply real-life use cases and projects to gain hands-on experience in implementing data observabilityInstil trust in your pipelines among data producers and consumers alikePurchase of the print or Kindle book includes a free PDF Elektronisches BuchBook DescriptionIn the age of information, strategic management of data is critical to organizational success. The constant challenge lies in maintaining data accuracy and preventing data pipelines from breaking. Data Observability for Data Engineering is your definitive guide to implementing data observability successfully in your organization.This book unveils the power of data observability, a fusion of techniques and methods that allow you to monitor and validate the health of your data. You'll see how it builds on data quality monitoring and understand its significance from the data engineering perspective. Once you're familiar with the techniques and elements of data observability, you'll get hands-on with a practical Python project to reinforce what you've learned. Toward the end of the book, you'll apply your expertise to explore diverse use cases and experiment with projects to seamlessly implement data observability in your organization.Equipped with the mastery of data observability intricacies, you'll be able to make your organization future-ready and resilient and never worry about the quality of your data pipelines again.What you will learnImplement a data observability approach to enhance the quality of data pipelinesCollect and analyze key metrics through coding examplesApply monkey patching in a Python moduleManage the costs and risks associated with your data pipelineUnderstand the main techniques for collecting observability metricsImplement monitoring techniques for analytics pipelines in productionBuild and maintain a statistics engine continuouslyWho this book is forThis book is for data engineers, data architects, data analysts, and data scientists who have encountered issues with broken data pipelines or dashboards. Organizations seeking to adopt data observability practices and managers responsible for data quality and processes will find this book especially useful to increase the confidence of data consumers and raise awareness among producers regarding their data pipelines.Table of ContentsFundamentals of Data Quality MonitoringFundamentals of Data ObservabilityData Observability techniquesData Observability elementsDefining rules on indicatorsRoot cause analysisOptimizing data pipelinesIntroducing and changing culture in the teamData observability checklistUse Cases. Bestandsnummer des Verkäufers 9781804616024
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47248834
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 47248834-n
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Bestandsnummer des Verkäufers C9781804616024
Anzahl: Mehr als 20 verfügbar