<strong style="color: rgba(0, 0, 0, 1)">Elevate your machine learning skills using the Conformal Prediction framework for uncertainty quantification. Dive into unique strategies, overcome real-world challenges, and become confident and precise with forecasting.
Key Features:
Book Description:
<span style="color: rgba(0, 0, 0, 1)">In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications.</span>
<span style="color: rgba(0, 0, 0, 1)">Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification.</span>
<span style="color: rgba(0, 0, 0, 1)">By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.</span>
What You Will Learn:
Who this book is for:
Ideal for readers with a basic understanding of machine learning concepts and Python programming, this book caters to data scientists, ML engineers, academics, and anyone keen on advancing their skills in uncertainty quantification in ML.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Valeriy Manokhin is the leading expert in the field of machine learning and Conformal Prediction. He holds a Ph.D.in Machine Learning from Royal Holloway, University of London. His doctoral work was supervised by the creator of Conformal Prediction, Vladimir Vovk, and focused on developing new methods for quantifying uncertainty in machine learning models.Valeriy has published extensively in leading machine learning journals, and his Ph.D. dissertation 'Machine Learning for Probabilistic Prediction' is read by thousands of people across the world. He is also the creator of "Awesome Conformal Prediction," the most popular resource and GitHub repository for all things Conformal Prediction.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,14 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 2,30 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396352193
Anzahl: 4 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781805122760
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781805122760
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781805122760_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781805122760
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Practical Guide to Applied Conformal Prediction in Python: Learn and apply the best uncertainty frameworks to your industry applications 0.92. Book. Bestandsnummer des Verkäufers BBS-9781805122760
Anzahl: 5 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26396352203
Anzahl: 4 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Discover the power of Conformal Prediction with the "Practical Guide to Applied Conformal Prediction in Python." Master the latest techniques to quantify uncertainty in machine learning and computer vision models, and seamlessly apply them to your industry applications. Bestandsnummer des Verkäufers LU-9781805122760
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 401106196
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47130100-n
Anzahl: Mehr als 20 verfügbar