Learn how to utilize biostatistics with Python for excelling in research and biomedical professions with practical exemplar projects
This book leverages the author’s decade-long experience in biostatistics and data science to simplify the practical use of biostatistics with Python. The chapters show you how to clean and describe your data effectively, setting a solid foundation for accurate analysis and proficiency in biostatistical inference to help you draw meaningful conclusions from your data through hypothesis testing and effect size analysis.
The book walks you through predictive modeling to harness the power of Python to create robust predictive analytics that can drive your research and professional projects forward. You'll explore clinical biostatistics, learn how to design studies, conduct survival analysis, and synthesize evidence from multiple studies with meta-analysis – skills that are crucial for making informed decisions based on comprehensive data reviews. The concluding chapters will enhance your ability to analyze biological variables, enabling you to perform detailed and accurate data analysis for biological research. This book's unique blend of biostatistics and Python helps you find practical solutions that make complex concepts easy to grasp and apply.
By the end of this biostatistics book, you’ll have moved from theoretical knowledge to practical experience, allowing you to perform biostatistical analysis confidently and accurately.
This book is for life science professionals, researchers, biomedical professionals, and aspiring biostatisticians who want to integrate biostatistics into their work or research. A basic understanding of life sciences, biology, or medicine is recommended to fully benefit from this book.
(N.B. Please use the Read Sample option to see further chapters)
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Darko Medin is a researcher and a biostatistician who graduated from the Faculty of Mathematics and Natural Sciences, Experimental Biology and Biotechnology, University of Montenegro. Darko is an expert biostatistician, especially in the fields of research and development in the biotech and pharma industries. He is a Python-based data scientist with more than 10 years of experience in the areas of clinical biostatistics and biomedical research. As a biologist and data scientist, he has worked with many research companies and academic institutions around the world and is an experienced machine learning and AI developer.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,34 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 8,68 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781837630967
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781837630967_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Biostatistics with Python: Apply Python for biostatistics with hands-on biomedical and biotechnology projects 1.41. Book. Bestandsnummer des Verkäufers BBS-9781837630967
Anzahl: 5 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 49335030-n
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn how to utilize biostatistics with Python for excelling in research and biomedical professions with practical exemplar projectsKey Features: Bridge the gap between biostatistics and life sciences with Python Work with practical exercises for real-world data analysis in biology and medicine Access a portfolio of exemplar projects in the domains of biomedicine, biotechnology, and biology Purchase of the print or Kindle book includes a free PDF Elektronisches BuchBook Description:This book leverages the author's decade-long experience in biostatistics and data science to simplify the practical use of biostatistics with Python. The chapters show you how to clean and describe your data effectively, setting a solid foundation for accurate analysis and proficiency in biostatistical inference to help you draw meaningful conclusions from your data through hypothesis testing and effect size analysis.The book walks you through predictive modeling to harness the power of Python to create robust predictive analytics that can drive your research and professional projects forward. You'll explore clinical biostatistics, learn how to design studies, conduct survival analysis, and synthesize evidence from multiple studies with meta-analysis - skills that are crucial for making informed decisions based on comprehensive data reviews. The concluding chapters will enhance your ability to analyze biological variables, enabling you to perform detailed and accurate data analysis for biological research. This book's unique blend of biostatistics and Python helps you find practical solutions that make complex concepts easy to grasp and apply.By the end of this biostatistics book, you'll have moved from theoretical knowledge to practical experience, allowing you to perform biostatistical analysis confidently and accurately.What You Will Learn: Get to grips with the basics of biostatistics and Python programming Clean and describe data using Python Familiarize yourself with hypothesis testing and effect size analysis Explore predictive modeling in biostatistics Understand clinical study design and survival analysis Gain a clear understanding of the meta-analysis of clinical research data Analyze biological variables with Python Discover practical data analysis for biological researchWho this book is for:This book is for life science professionals, researchers, biomedical professionals, and aspiring biostatisticians who want to integrate biostatistics into their work or research. A basic understanding of life sciences, biology, or medicine is recommended to fully benefit from this book.Table of Contents: Introduction to Biostatistics Getting Started with Python for Biostatistics Exercise 1 - Cleaning and Describing Data Using Python Part 1 Exemplar Project - Load, Clean, and Describe Diabetes Data in Python Introduction to Python for Biostatistics Biostatistical Inference Using Hypothesis Tests and Effect Sizes Predictive Biostatistics Using Python Part 2 Exercise - T-Test, ANOVA, and Linear and Logistic Regression Biostatistical Inference and Predictive Analytics Using Cardiovascular Study Data Clinical Study Design Survival Analysis in Biomedical Research Meta-Analysis - Synthesizing Evidence from Multiple Studies Survival Predictive Analysis and Meta-Analysis Practice Part 3 Exemplar Project - Meta-Analysis of Survival Data in Clinical Research Understanding Biological Variables Data Analysis Frameworks and Performance for Life Sciences Research Part 4 Exercise - Performing Statistics for Biology Studies in Python. Bestandsnummer des Verkäufers 9781837630967
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49335030
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 49335030-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 49335030
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18403561594
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26403561584
Anzahl: 4 verfügbar