Teach your machine to think for itself!
Supervised machine learning is used in a wide range of sectors (such as finance, online advertising, and analytics) because it allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more while the system self-adjusts and makes decisions on its own. As a result, it's crucial to know how a machine learns under the hood.
This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You'll embark on this journey with a quick overview and see how supervised machine learning differs from unsupervised learning. Next, we explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you'll wrap up with a brief foray into neural networks and transfer learning.
By the end of this book, you'll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and powerfully apply algorithms to new problems.
This book is for aspiring machine learning developers who want to get started with supervised learning. Intermediate knowledge of Python programming?and some fundamental knowledge of supervised learning?are expected.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Taylor Smith is a machine learning enthusiast with over five years of experience who loves to apply interesting computational solutions to challenging business problems. Currently working as a principal data scientist, Taylor is also an active open source contributor and staunch Pythonista.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160229044
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781838825669
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. Teach your machine to think for itself!Key FeaturesDelve into supervised learning and grasp how a machine learns from dataImplement popular machine learning algorithms from scratch, developing a deep understanding along the wayExplore some of the most popular scientific and mathematical libraries in the Python languageBook DescriptionSupervised machine learning is used in a wide range of sectors (such as finance, online advertising, and analytics) because it allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more while the system self-adjusts and makes decisions on its own. As a result, it's crucial to know how a machine "learns" under the hood.This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You'll embark on this journey with a quick overview and see how supervised machine learning differs from unsupervised learning. Next, we explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you'll wrap up with a brief foray into neural networks and transfer learning.By the end of this book, you'll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and powerfully apply algorithms to new problems.What you will learnCrack how a machine learns a concept and generalize its understanding to new dataUncover the fundamental differences between parametric and non-parametric modelsImplement and grok several well-known supervised learning algorithms from scratchWork with models in domains such as ecommerce and marketingExpand your expertise and use various algorithms such as regression, decision trees, and clusteringBuild your own models capable of making predictionsDelve into the most popular approaches in deep learning such as transfer learning and neural networksWho this book is forThis book is for aspiring machine learning developers who want to get started with supervised learning. Intermediate knowledge of Python programming-and some fundamental knowledge of supervised learning-are expected. Bestandsnummer des Verkäufers LU-9781838825669
Anzahl: Mehr als 20 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 162. Bestandsnummer des Verkäufers 369263751
Anzahl: 4 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781838825669_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9781838825669
Anzahl: 10 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 526. Bestandsnummer des Verkäufers C9781838825669
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. A supervised learning task infers a function from flagged training data and maps an input to an output based on sample input-output pairs. In this book, you will learn various machine learning techniques (such as linear and logistic regression) and gain the. Bestandsnummer des Verkäufers 448360842
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Teach your machine to think for itself!Key Features: Delve into supervised learning and grasp how a machine learns from data Implement popular machine learning algorithms from scratch Explore some of the most popular scientific and mathematical libraries in the Python languageBook Description:Supervised machine learning is used in a wide range of sectors, such as finance, online advertising, and analytics, to train systems to make pricing predictions, campaign adjustments, customer recommendations, and much more by learning from the data that is used to train it and making decisions on its own. This makes it crucial to know how a machine 'learns' under the hood.This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms, and help you understand how they work. You'll embark on this journey with a quick overview of supervised learning and see how it differs from unsupervised learning. You'll then explore parametric models, such as linear and logistic regression, non-parametric methods, such as decision trees, and a variety of clustering techniques that facilitate decision-making and predictions. As you advance, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you'll wrap up with a brief foray into neural networks and transfer learning.By the end of this book, you'll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and effectively apply algorithms to solve new problems.What You Will Learn: Crack how a machine learns a concept and generalizes its understanding of new data Uncover the fundamental differences between parametric and non-parametric models Implement and grok several well-known supervised learning algorithms from scratch Work with models in domains such as ecommerce and marketing Get to grips with algorithms such as regression, decision trees, and clustering Build your own models capable of making predictions Delve into the most popular approaches in deep learning such as transfer learning and neural networksWho this book is for:This book is for anyone who wants to get started with supervised learning. Intermediate knowledge of Python programming along with fundamental knowledge of supervised learning is expected. Bestandsnummer des Verkäufers 9781838825669
Anzahl: 1 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. Teach your machine to think for itself!Key FeaturesDelve into supervised learning and grasp how a machine learns from dataImplement popular machine learning algorithms from scratch, developing a deep understanding along the wayExplore some of the most popular scientific and mathematical libraries in the Python languageBook DescriptionSupervised machine learning is used in a wide range of sectors (such as finance, online advertising, and analytics) because it allows you to train your system to make pricing predictions, campaign adjustments, customer recommendations, and much more while the system self-adjusts and makes decisions on its own. As a result, it's crucial to know how a machine "learns" under the hood.This book will guide you through the implementation and nuances of many popular supervised machine learning algorithms while facilitating a deep understanding along the way. You'll embark on this journey with a quick overview and see how supervised machine learning differs from unsupervised learning. Next, we explore parametric models such as linear and logistic regression, non-parametric methods such as decision trees, and various clustering techniques to facilitate decision-making and predictions. As we proceed, you'll work hands-on with recommender systems, which are widely used by online companies to increase user interaction and enrich shopping potential. Finally, you'll wrap up with a brief foray into neural networks and transfer learning.By the end of this book, you'll be equipped with hands-on techniques and will have gained the practical know-how you need to quickly and powerfully apply algorithms to new problems.What you will learnCrack how a machine learns a concept and generalize its understanding to new dataUncover the fundamental differences between parametric and non-parametric modelsImplement and grok several well-known supervised learning algorithms from scratchWork with models in domains such as ecommerce and marketingExpand your expertise and use various algorithms such as regression, decision trees, and clusteringBuild your own models capable of making predictionsDelve into the most popular approaches in deep learning such as transfer learning and neural networksWho this book is forThis book is for aspiring machine learning developers who want to get started with supervised learning. Intermediate knowledge of Python programming-and some fundamental knowledge of supervised learning-are expected. Bestandsnummer des Verkäufers LU-9781838825669
Anzahl: Mehr als 20 verfügbar