Get to grips with building robust XGBoost models using Python and scikit-learn for deployment
XGBoost is an industry-proven, open-source software library that provides a gradient boosting framework for scaling billions of data points quickly and efficiently.
The book introduces machine learning and XGBoost in scikit-learn before building up to the theory behind gradient boosting. You'll cover decision trees and analyze bagging in the machine learning context, learning hyperparameters that extend to XGBoost along the way. You'll build gradient boosting models from scratch and extend gradient boosting to big data while recognizing speed limitations using timers. Details in XGBoost are explored with a focus on speed enhancements and deriving parameters mathematically. With the help of detailed case studies, you'll practice building and fine-tuning XGBoost classifiers and regressors using scikit-learn and the original Python API. You'll leverage XGBoost hyperparameters to improve scores, correct missing values, scale imbalanced datasets, and fine-tune alternative base learners. Finally, you'll apply advanced XGBoost techniques like building non-correlated ensembles, stacking models, and preparing models for industry deployment using sparse matrices, customized transformers, and pipelines.
By the end of the book, you'll be able to build high-performing machine learning models using XGBoost with minimal errors and maximum speed.
This book is for data science professionals and enthusiasts, data analysts, and developers who want to build fast and accurate machine learning models that scale with big data. Proficiency in Python, along with a basic understanding of linear algebra, will help you to get the most out of this book.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Corey Wade, M.S. Mathematics, M.F.A. Writing & Consciousness, is the founder and director of Berkeley Coding Academy where he teaches Machine Learning and AI to teens from all over the world. Additionally, Corey chairs the Math Department at Berkeley Independent Study where he has received multiple grants to run after-school coding programs to help bridge the tech skills gap. Additional experiences include teaching Natural Language Processing with Hello World, developing Data Science curricula with Pathstream, and publishing statistics and machine learning models with Towards Data Science, Springboard, and Medium.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 10,96 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 29,66 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Better World Books, Mishawaka, IN, USA
Zustand: Very Good. Used book that is in excellent condition. May show signs of wear or have minor defects. Bestandsnummer des Verkäufers 51831494-6
Anzahl: 1 verfügbar
Anbieter: Goldstone Books, Llandybie, Vereinigtes Königreich
paperback. Zustand: Very Good. All orders are dispatched within one working day from our UK warehouse. We've been selling books online since 2004! We have over 750,000 books in stock. No quibble refund if not completely satisfied. Bestandsnummer des Verkäufers mon0007492377
Anzahl: 1 verfügbar
Anbieter: SecondSale, Montgomery, IL, USA
Zustand: Very Good. Item in very good condition! Textbooks may not include supplemental items i.e. CDs, access codes etc. Bestandsnummer des Verkäufers 00082791791
Anzahl: 1 verfügbar
Anbieter: dsmbooks, Liverpool, Vereinigtes Königreich
paperback. Zustand: New. New. book. Bestandsnummer des Verkäufers D8S0-3-M-1839218355-6
Anzahl: 1 verfügbar