Machine learning and data analytics can be used to inform technical, commercial and financial decisions in the maritime industry. The purpose of this book is to provide maritime researchers and professionals with insights into the use of data-driven models, especially those considering shipping domain knowledge
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ran Yan is a research assistant professor in the Department of Logistics and Maritime Studies at The Hong Kong Polytechnic University (PolyU), China. Dr. Yan received her Bachelor of Science degree from Hohai University in China in 2018 and her Master of Philosophy and Doctor of Philosophy degrees from The Hong Kong Polytechnic University in 2020 and 2022, respectively. Dr. Yan's research interests include applying data analytics methods and technologies to improve shipping efficiency and green shipping management. Dr. Yan has published more than 30 papers in international journals and conference proceedings, such as Transportation Research Part B/C/E, Transport Policy, Journal of Computational Science, Maritime Policy & Management, Ocean Engineering, Engineering, Sustainability, and Electronic Research Archive, and won several times of best paper/student paper award from international conferences. Dr. Yan is an editorial assistant of Cleaner Logistics and Supply Chain.
Shuaian Wang is currently Professor at The Hong Kong Polytechnic University (PolyU), China. Prior to joining PolyU, he worked as a faculty member at Old Dominion University, USA, and the University of Wollongong, Australia. Dr. Wang's research interests include big data in shipping, green shipping, shipping operations management, port planning and operations, urban transport network modeling, and logistics and supply chain management. Dr. Wang has published over 200 papers in journals such as Transportation Research Part B, Transportation Science, and Operations Research. Dr. Wang is an editor-in-chief of Cleaner Logistics and Supply Chain and Communications in Transportation Research, an associate editor of Transportation Research Part E, Flexible Services and Manufacturing Journal, Transportmetrica A, and Transportation Letters, a handle editor of Transportation Research Record, an editorial board editor of Transportation Research Part B, and an editorial board member of Maritime Transport Research. Dr. Wang dedicates to rethinking and proposing innovative solutions to improve the efficiency of maritime and urban transportation systems, to promote environmental friendly and sustainable practices, and to transform business and engineering education.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 45762188-n
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9781839535598
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45762188
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Hardback. Zustand: New. Machine learning and data analytics can be used to inform technical, commercial and financial decisions in the maritime industry. Applications of Machine Learning and Data Analytics Models in Maritime Transportation explores the fundamental principles of analysing maritime transportation related practical problems using data-driven models, with a particular focus on machine learning and operations research models. Data-enabled methodologies, technologies, and applications in maritime transportation are clearly and concisely explained, and case studies of typical maritime challenges and solutions are also included. The authors begin with an introduction to maritime transportation, followed by chapters providing an overview of ship inspection by port state control, and the principles of data driven models. Further chapters cover linear regression models, Bayesian networks, support vector machines, artificial neural networks, tree-based models, association rule learning, cluster analysis, classic and emerging approaches to solving practical problems in maritime transport, incorporating shipping domain knowledge into data-driven models, explanation of black-box machine learning models in maritime transport, linear optimization, advanced linear optimization, and integer optimization. A concluding chapter provides an overview of coverage and explores future possibilities in the field. The book will be especially useful to researchers and professionals with expertise in maritime research who wish to learn how to apply data analytics and machine learning to their fields. Bestandsnummer des Verkäufers LU-9781839535598
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45762188
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store US, Wood Dale, IL, USA
HRD. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781839535598
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
HRD. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L1-9781839535598
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 45762188-n
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Hardback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days. Bestandsnummer des Verkäufers C9781839535598
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 300 pages. 9.25x6.25x0.75 inches. In Stock. Bestandsnummer des Verkäufers x-1839535598
Anzahl: 2 verfügbar