Spectral analysis requires subjective decisions which influence the final estimate and mean that different analysts can obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that is only acceptable if it is close to the best attainable accuracy for most types of stationary data. This book describes a method which fulfils the above near-optimal-solution criterion, taking advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Piet M.T. Broersen received the Ph.D. degree in 1976, from the Delft University of Technology in the Netherlands.
He is currently with the Department of Multi-scale Physics at TU Delft. His main research interest is in automatic identification on statistical grounds. He has developed a practical solution for the spectral and autocorrelation analysis of stochastic data by the automatic selection of a suitable order and type for a time series model of the data.
Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively.
In the current practice of spectral analysis, subjective decisions have to be made all of which influence the final spectral estimate and mean that different analysts obtain different results from the same stationary stochastic observations. Statistical signal processing can overcome this difficulty, producing a unique solution for any set of observations but that solution is only acceptable if it is close to the best attainable accuracy for most types of stationary data.
Automatic Autocorrelation and Spectral Analysis describes a method which fulfils the above near-optimal-solution criterion. It takes advantage of greater computing power and robust algorithms to produce enough candidate models to be sure of providing a suitable candidate for given data. Improved order selection quality guarantees that one of the best (and often the best) will be selected automatically. The data themselves suggest their best representation. Should the analyst wish to intervene, alternatives can be provided. Written for graduate signal processing students and for researchers and engineers using time series analysis for practical applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers:
tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models;
extensive support for the MATLAB® ARMAsel toolbox;
applications showing the methods in action;
appropriate mathematics for students to apply the methods with references for those who wish to develop them further.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 16,94 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerAnbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-242208
Anzahl: 1 verfügbar
Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA
Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Bestandsnummer des Verkäufers ABNR-82940
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Shows the reader which spectral methods (algorithms) are useful in practiceDemonstrates the clear advantages of using parametric rather than non-parametric models for spectral analysisProvides the reader with detailed assistance in using th. Bestandsnummer des Verkäufers 4282937
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 4154537-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 4154537
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - Automatic Autocorrelation and Spectral Analysis gives random data a language to communicate the information they contain objectively. It takes advantage of greater computing power and robust algorithms to produce enough candidate models of a given group of data to be sure of providing a suitable one. Improved order selection guarantees that one of the best (often the best) will be selected automatically. Written for graduate signal processing students and for researchers and engineers using time series analysis for applications ranging from breakdown prevention in heavy machinery to measuring lung noise for medical diagnosis, this text offers: tuition in how power spectral density and the autocorrelation function of stochastic data can be estimated and interpreted in time series models; extensive support for the MATLAB ARMAsel toolbox; applications showing the methods in action; appropriate mathematics for students to apply the methods with references for those who wish to develop them further. Bestandsnummer des Verkäufers 9781846283284
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 4154537
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 1st edition. 298 pages. 10.00x6.75x0.75 inches. In Stock. Bestandsnummer des Verkäufers x-1846283280
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 4154537-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160241964
Anzahl: Mehr als 20 verfügbar