This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. Two key problems with the fundamentals of iterative learning control (ILC) design as treated by existing work are: first, many ILC design strategies assume nominal knowledge of the system to be controlled and; second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergence is often essential.
Iterative Learning Control takes account of the recently-developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. Topics include:
· Use of a lifting technique to convert the two-dimensional ILC system, which has dynamics in both the time and iteration domains, into the supervector framework, which yields a one-dimensional system, with dynamics only in the iteration domain.
· Development of iteration-domain uncertainty models in the supervector framework.
· ILC design for monotonic convergence when the plant is subject to parametric interval uncertainty in its Markov matrix.
· An algebraic H-infinity design methodology for ILC design when the plant is subject to iteration-domain frequency uncertainty.
· Development of Kalman-filter-based ILC algorithms when the plant is subject to iteration-domain stochastic uncertainties.
· Analytical determination of the base-line error of ILC algorithms.
· Solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix.
Iterative Learning Control will be of great interest to academic researchers in control theory and to industrial control engineers working in robotics-oriented manufacturing and batch-processing-based industries. Graduate students of intelligent control will also find this volume instructive.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Versand:
EUR 29,71
Von Vereinigtes Königreich nach USA
Versand:
EUR 14,24
Von Vereinigtes Königreich nach USA
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9781849966580_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160254970
Anzahl: Mehr als 20 verfügbar
Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich
Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 386. Bestandsnummer des Verkäufers C9781849966580
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty. 248 pp. Englisch. Bestandsnummer des Verkäufers 9781849966580
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows the reader how to use robust iterative learning control in the face of model uncertaintyHelps to improve the performance of repetitive electromechanical tasks, widespread in industryProvides a rounded and self-contained approach to th. Bestandsnummer des Verkäufers 4288771
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph studies the design of robust, monotonically-convergent it- ative learning controllers for discrete-time systems. Iterative learning control (ILC) is well-recognized as an e cient method that o ers signi cant p- formance improvement for systems that operate in an iterative or repetitive fashion (e. g. , robot arms in manufacturing or batch processes in an industrial setting). Though the fundamentals of ILC design have been well-addressed in the literature, two key problems have been the subject of continuing - search activity. First, many ILC design strategies assume nominal knowledge of the system to be controlled. Only recently has a comprehensive approach to robust ILC analysis and design been established to handle the situation where the plant model is uncertain. Second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergencecan be essential. This monograph addresses these two keyproblems by providingauni ed analysisanddesignframeworkforrobust, monotonically-convergent ILC. The particular approach used throughout is to consider ILC design in the iteration domain, rather than in the time domain. Using a lifting technique, the two-dimensionalILC system, whichhas dynamics in both the time and - erationdomains,istransformedintoaone-dimensionalsystem,withdynamics only in the iteration domain. The so-called super-vector framework resulting from this transformation is used to analyze both robustness and monotonic convergence for typical uncertainty models, including parametric interval - certainties, frequency-like uncertainty in the iteration domain, and iterati- domain stochastic uncertainty. Bestandsnummer des Verkäufers 9781849966580
Anzahl: 1 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Paperback. Zustand: Like New. Like New. book. Bestandsnummer des Verkäufers ERICA77318499665836
Anzahl: 1 verfügbar