Verwandte Artikel zu Iterative Learning Control: Robustness and Monotonic...

Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems (Communications and Control Engineering) - Softcover

 
9781849966580: Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems (Communications and Control Engineering)

Inhaltsangabe

This monograph studies the design of robust, monotonically convergent iterative learning controllers (ILC) for discrete-time systems. It takes account of the recently developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. It presents solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Hyo-Sung Ahn has research interests in the areas of robust iterative learning control, periodic adaptive learning control, networked control systems, neural networks, mobile robotics, navigation, biomechatronics, and aerospace engineering. He was research engineer in Space Development and Research Center, Korea Aerospace Indusstries LTD, Korea, and Upper Midwest Aerospace Consortium, USA. He received the M.S. degree from the University of North Dakota in Aerospace Engineering and the Ph.D. in Electrical Engineering from Utah State University. Dr. Ahn, with his co-authors, has been the primary developer of the ideas in the monograph and has a deep understanding of the design of iterative learning control systems, especially as regards robustness.

Professor Moore is the G.A. Dobelman Distinguished Chair and Professor of Engineering in the Division of Engineering at the Colorado School of Mines. He received the B.S. and M.S. degrees in electrical engineering from Louisiana State University and the University of Southern California, respectively. He received the Ph.D. in electrical engineering, with an emphasis in control theory, from Texas A&M University. Most recently he was a senior scientist at Johns Hopkins University's Applied Physics Laboratory, where he worked in the area of unattended air vehicles, cooperative control, and autonomous systems (2004-2005). He was previously an Associate Professor at Idaho State University (1989-1998) and a Professor of Electrical and Computer Engineering at Utah State University, where he was the Director of the Center for Self-Organizing and Intelligent Systems, directing multi-disciplinary research teams of students and professionals developing a variety of autonomous robots for government and commercial applications (1998 -2004). He also worked in industry for three years pre-Ph.D as a member of the technical staff at Hughes Aircraft Company. His general research interests include iterative learning control theory, autonomous systems and robotics, and applications of control to industrial and mechatronic systems. He is the author of the research monograph Iterative Learning Control for Deterministic Systems, published by Springer-Verlag in 1993, and co-author of the book Sensing, Modeling, and Control of Gas Metal Arc Welding, published by Elsevier in 2003. He is a professional engineer, involved in several professional societies and editorial activities, and is interested in engineering education pedagogy. Of particular relevance for the proposed monograph, Dr. Moore has been a seminal contributor and leader in the field of ILC. His early work in the field developed the idea of the supervector approach, and he has studied the problem of monotonic convergence, and he initiated the idea of studying robustness in the iteration domain. He has also been active in organizing ILC workshops, invited sessions on ILC at conferences, and editing special issues of journals. His insights on the ILC problem will directly influence the contents of the proposed monograph.

Dr YangQuan Chen is presently an assistant professor of Electrical and Computer Engineering Department and the Acting Director for CSOIS (Center for Self-Organizing and Intelligent Systems, www.csois.usu.edu) at Utah State University. He obtained his Ph.D. from Nanyang Technological University, Singapore in 1998, an MS from Beijing Institute of Technology (BIT) in 1989, and a BS from University of Science and Technology of Beijing (USTB) in 1985. Dr Chen has 12 US patents granted and 2 US patent applications published, most related to the implementation of ILC algorithms, which lends special insight into the ILC application examples found in the mongraph. He has published more than 200 academic papers and (co)authored more than 50 industrial reports. His recent books include Solving Advanced Applied Mathematical Problems Using Matlab (with Dingyu Xue, Tsinghua University Press. August 2004. 419 pages in Chinese. ISBN 7-302-09311-3/O.392), System Simulation Techniques with Matlab/Simulink (with Dingyu Xue, Tsinghua University Press, April 2002, ISBN7-302-05341-3/TP3137, in Chinese) and Iterative Learning Control: Convergence, Robustness and Applications (with Changyun Wen, Lecture Notes Series in Control and Information Science, Springer-Verlag, Nov. 1999, ISBN: 1-85233-190-9). His current research interests include autonomous navigation and intelligent control of a team of unmanned ground vehicles, machine vision for control and automation, distributed control systems (MAS-net: mobile actuator-sensor networks), fractional order control, interval computation, biofilm and chemotaxis modeling, nanomechatronics and biomechatronics, and iterative/repetitive/adaptive learning control. Dr Chen has been an Associate Editor in the Conference Editorial Board of IEEE Control Systems Society since 2002. He is a founding member of the ASME subcommittee of "Fractional Dynamics" in 2003. He is a senior member of IEEE, a member of ASME, and a member of ISIF (International Society for Information Fusion).

Von der hinteren Coverseite

This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. Two key problems with the fundamentals of iterative learning control (ILC) design as treated by existing work are: first, many ILC design strategies assume nominal knowledge of the system to be controlled and; second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergence is often essential.

Iterative Learning Control takes account of the recently-developed comprehensive approach to robust ILC analysis and design established to handle the situation where the plant model is uncertain. Considering ILC in the iteration domain, it presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. Topics include:

Use of a lifting technique to convert the two-dimensional ILC system, which has dynamics in both the time and iteration domains, into the supervector framework, which yields a one-dimensional system, with dynamics only in the iteration domain.

Development of iteration-domain uncertainty models in the supervector framework.

ILC design for monotonic convergence when the plant is subject to parametric interval uncertainty in its Markov matrix.

An algebraic H-infinity design methodology for ILC design when the plant is subject to iteration-domain frequency uncertainty.

Development of Kalman-filter-based ILC algorithms when the plant is subject to iteration-domain stochastic uncertainties.

Analytical determination of the base-line error of ILC algorithms.

Solutions to three fundamental robust interval computational problems (used as basic tools for designing robust ILC controllers): finding the maximum singular value of an interval matrix, determining the robust stability of interval polynomial matrix, and obtaining the power of an interval matrix.

Iterative Learning Control will be of great interest to academic researchers in control theory and to industrial control engineers working in robotics-oriented manufacturing and batch-processing-based industries. Graduate students of intelligent control will also find this volume instructive.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Like New
Diesen Artikel anzeigen

EUR 28,62 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

EUR 13,71 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781846288463: Iterative Learning Control: Robustness and Monotonic Convergence for Interval Systems (Communications and Control Engineering)

Vorgestellte Ausgabe

ISBN 10:  1846288460 ISBN 13:  9781846288463
Verlag: Springer, 2007
Hardcover

Suchergebnisse für Iterative Learning Control: Robustness and Monotonic...

Beispielbild für diese ISBN

Ahn, Hyo-Sung; Moore, Kevin L.; Chen, YangQuan
Verlag: Springer, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781849966580_new

Verkäufer kontaktieren

Neu kaufen

EUR 134,55
Währung umrechnen
Versand: EUR 13,71
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ahn, Hyo-Sung; Moore, Kevin L.; Chen, YangQuan
Verlag: Springer, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar2912160254970

Verkäufer kontaktieren

Neu kaufen

EUR 155,29
Währung umrechnen
Versand: EUR 3,38
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Hyo-Sung Ahn
Verlag: Springer London Ltd, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Paperback / softback
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback / softback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 386. Bestandsnummer des Verkäufers C9781849966580

Verkäufer kontaktieren

Neu kaufen

EUR 163,63
Währung umrechnen
Versand: EUR 12,14
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Hyo-Sung Ahn
Verlag: Springer London Okt 2010, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty. 248 pp. Englisch. Bestandsnummer des Verkäufers 9781849966580

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Hyo-Sung Ahn|Kevin L. Moore|YangQuan Chen
Verlag: Springer London, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Shows the reader how to use robust iterative learning control in the face of model uncertaintyHelps to improve the performance of repetitive electromechanical tasks, widespread in industryProvides a rounded and self-contained approach to th. Bestandsnummer des Verkäufers 4288771

Verkäufer kontaktieren

Neu kaufen

EUR 136,16
Währung umrechnen
Versand: EUR 48,99
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

YangQuan Chen Hyo-Sung Ahn Kevin L. Moore
Verlag: Springer, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 250. Bestandsnummer des Verkäufers 262130599

Verkäufer kontaktieren

Neu kaufen

EUR 208,55
Währung umrechnen
Versand: EUR 3,38
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Hyo-Sung Ahn
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This monograph studies the design of robust, monotonically-convergent it- ative learning controllers for discrete-time systems. Iterative learning control (ILC) is well-recognized as an e cient method that o ers signi cant p- formance improvement for systems that operate in an iterative or repetitive fashion (e. g. , robot arms in manufacturing or batch processes in an industrial setting). Though the fundamentals of ILC design have been well-addressed in the literature, two key problems have been the subject of continuing - search activity. First, many ILC design strategies assume nominal knowledge of the system to be controlled. Only recently has a comprehensive approach to robust ILC analysis and design been established to handle the situation where the plant model is uncertain. Second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergencecan be essential. This monograph addresses these two keyproblems by providingauni ed analysisanddesignframeworkforrobust, monotonically-convergent ILC. The particular approach used throughout is to consider ILC design in the iteration domain, rather than in the time domain. Using a lifting technique, the two-dimensionalILC system, whichhas dynamics in both the time and - erationdomains,istransformedintoaone-dimensionalsystem,withdynamics only in the iteration domain. The so-called super-vector framework resulting from this transformation is used to analyze both robustness and monotonic convergence for typical uncertainty models, including parametric interval - certainties, frequency-like uncertainty in the iteration domain, and iterati- domain stochastic uncertainty.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 248 pp. Englisch. Bestandsnummer des Verkäufers 9781849966580

Verkäufer kontaktieren

Neu kaufen

EUR 160,49
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Hyo-Sung Ahn
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph studies the design of robust, monotonically-convergent it- ative learning controllers for discrete-time systems. Iterative learning control (ILC) is well-recognized as an e cient method that o ers signi cant p- formance improvement for systems that operate in an iterative or repetitive fashion (e. g. , robot arms in manufacturing or batch processes in an industrial setting). Though the fundamentals of ILC design have been well-addressed in the literature, two key problems have been the subject of continuing - search activity. First, many ILC design strategies assume nominal knowledge of the system to be controlled. Only recently has a comprehensive approach to robust ILC analysis and design been established to handle the situation where the plant model is uncertain. Second, it is well-known that many ILC algorithms do not produce monotonic convergence, though in applications monotonic convergencecan be essential. This monograph addresses these two keyproblems by providingauni ed analysisanddesignframeworkforrobust, monotonically-convergent ILC. The particular approach used throughout is to consider ILC design in the iteration domain, rather than in the time domain. Using a lifting technique, the two-dimensionalILC system, whichhas dynamics in both the time and - erationdomains,istransformedintoaone-dimensionalsystem,withdynamics only in the iteration domain. The so-called super-vector framework resulting from this transformation is used to analyze both robustness and monotonic convergence for typical uncertainty models, including parametric interval - certainties, frequency-like uncertainty in the iteration domain, and iterati- domain stochastic uncertainty. Bestandsnummer des Verkäufers 9781849966580

Verkäufer kontaktieren

Neu kaufen

EUR 162,91
Währung umrechnen
Versand: EUR 61,91
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chen YangQuan Ahn Hyo-Sung Moore Kevin L.
Verlag: Springer, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 250 49:B&W 6.14 x 9.21 in or 234 x 156 mm (Royal 8vo) Perfect Bound on White w/Gloss Lam. Bestandsnummer des Verkäufers 5717368

Verkäufer kontaktieren

Neu kaufen

EUR 220,09
Währung umrechnen
Versand: EUR 7,44
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Chen YangQuan Ahn Hyo-Sung Moore Kevin L.
Verlag: Springer, 2010
ISBN 10: 1849966583 ISBN 13: 9781849966580
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND pp. 250. Bestandsnummer des Verkäufers 182130605

Verkäufer kontaktieren

Neu kaufen

EUR 226,76
Währung umrechnen
Versand: EUR 9,95
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen