Verwandte Artikel zu Local Multipliers of C*-Algebras (Springer Monographs...

Local Multipliers of C*-Algebras (Springer Monographs in Mathematics) - Hardcover

 
9781852332372: Local Multipliers of C*-Algebras (Springer Monographs in Mathematics)

Inhaltsangabe

Many problems in operator theory lead to the consideration ofoperator equa­ tions, either directly or via some reformulation. More often than not, how­ ever, the underlying space is too 'small' to contain solutions of these equa­ tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition­ ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

Many problems in operator theory lead to the consideration ofoperator equa­ tions, either directly or via some reformulation. More often than not, how­ ever, the underlying space is too 'small' to contain solutions of these equa­ tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C*-algebra A that turns out to be small in this sense tradition­ ally is enlarged to its (universal) enveloping von Neumann algebra A". This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A" is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C*-algebra A becomes inner in A", though 8 may not be inner in A. The transition from A to A" however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A". In such a situation, A is typically enlarged by its multiplier algebra M(A).

Reseña del editor

The theme of this book is operator theory on C*-algebras. The main novel tool employed is the concept of local multipliers. Originally devised by Elliott and Pedersen in the 1970's in order to study derivations and automorphisms, local multipliers of C*-algebras were developed into a powerful device by the present authors in the 1990's. The book serves two purposes. The first part provides the reader - specialist and advanced graduate student alike - with a thorough introduction to the theory of local multipliers. Only a minimal knowledge of algebra and analysis is required, as the prerequisites in both non-commutative ring theory and basic C*-algebra theory are presented in the first chapter. In the second part, local multipliers are used to obtain a wealth of information on various classes of operators on C*-algebras, including (groups of) automorphisms, derivations, elementary operators, Lie isomorphisms and Lie derivations, as well as others. Many of the results appear in print for the first time. The authors have made an effort to avoid intricate technicalities thus some of the results are not pushed to their utmost generality. Several open problems are discussed, and hints for further developments are given.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Gut
Zustand: Gut | Seiten: 340 | Sprache...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781447110682: Local Multipliers of C*-Algebras (Springer Monographs in Mathematics)

Vorgestellte Ausgabe

ISBN 10:  1447110684 ISBN 13:  9781447110682
Verlag: Springer, 2012
Softcover

Suchergebnisse für Local Multipliers of C*-Algebras (Springer Monographs...

Beispielbild für diese ISBN

Martin Mathieu, Pere Ara
Verlag: Springer London, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Gut. Zustand: Gut | Seiten: 340 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 1063159/3

Verkäufer kontaktieren

Gebraucht kaufen

EUR 43,23
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Martin Mathieu, Pere Ara
Verlag: Springer London, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 340 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 1063159/2

Verkäufer kontaktieren

Gebraucht kaufen

EUR 43,23
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Pere Ara; Martin Mathieu
Verlag: London, Springer, 2003
ISBN 10: 1852332379 ISBN 13: 9781852332372
Gebraucht Hardcover

Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. C-03554 9781852332372 Sprache: Englisch Gewicht in Gramm: 1050. Bestandsnummer des Verkäufers 2489469

Verkäufer kontaktieren

Gebraucht kaufen

EUR 43,10
Währung umrechnen
Versand: EUR 5,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Pere Ara|Martin Mathieu
Verlag: Springer London, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. No other book on C*-algebra covers local multipliers of C*-algebras This book includes applications that have not yet appeared in print, from respected experts in the fieldNo other book on C*-algebra covers local multipliers of C*-algeb. Bestandsnummer des Verkäufers 4289428

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Martin Mathieu
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C\*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A'. This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A' is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C\*-algebra A becomes inner in A', though 8 may not be inner in A. The transition from A to A' however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C\*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A'. In such a situation, A is typically enlarged by its multiplier algebra M(A).Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 340 pp. Englisch. Bestandsnummer des Verkäufers 9781852332372

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Martin Mathieu
Verlag: Springer London Okt 2002, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C\*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A'. This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A' is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C\*-algebra A becomes inner in A', though 8 may not be inner in A. The transition from A to A' however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C\*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A'. In such a situation, A is typically enlarged by its multiplier algebra M(A). 340 pp. Englisch. Bestandsnummer des Verkäufers 9781852332372

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Martin Mathieu
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many problems in operator theory lead to the consideration ofoperator equa tions, either directly or via some reformulation. More often than not, how ever, the underlying space is too 'small' to contain solutions of these equa tions and thus it has to be 'enlarged' in some way. The Berberian-Quigley enlargement of a Banach space, which allows one to convert approximate into genuine eigenvectors, serves as a classical example. In the theory of operator algebras, a C\*-algebra A that turns out to be small in this sense tradition ally is enlarged to its (universal) enveloping von Neumann algebra A'. This works well since von Neumann algebras are in many respects richer and, from the Banach space point of view, A' is nothing other than the second dual space of A. Among the numerous fruitful applications of this principle is the well-known Kadison-Sakai theorem ensuring that every derivation 8 on a C\*-algebra A becomes inner in A', though 8 may not be inner in A. The transition from A to A' however is not an algebraic one (and cannot be since it is well known that the property of being a von Neumann algebra cannot be described purely algebraically). Hence, ifthe C\*-algebra A is small in an algebraic sense, say simple, it may be inappropriate to move on to A'. In such a situation, A is typically enlarged by its multiplier algebra M(A). Bestandsnummer des Verkäufers 9781852332372

Verkäufer kontaktieren

Neu kaufen

EUR 114,36
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Pere Ara; Martin Mathieu
Verlag: Springer, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781852332372_new

Verkäufer kontaktieren

Neu kaufen

EUR 112,07
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Ara, Pere; Mathieu, Martin
Verlag: Springer, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 1630786-n

Verkäufer kontaktieren

Neu kaufen

EUR 104,23
Währung umrechnen
Versand: EUR 17,11
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Ara, Pere; Mathieu, Martin
Verlag: Springer, 2002
ISBN 10: 1852332379 ISBN 13: 9781852332372
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 1630786-n

Verkäufer kontaktieren

Neu kaufen

EUR 123,54
Währung umrechnen
Versand: EUR 17,34
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 8 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen