Verwandte Artikel zu Machine Learning with Clustering: A Visual Guide for...

Machine Learning with Clustering: A Visual Guide for Beginners with Examples in Python 3 - Softcover

 
9781979086585: Machine Learning with Clustering: A Visual Guide for Beginners with Examples in Python 3

Inhaltsangabe

There are four major tasks for clustering:

Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.

Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.

Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.

Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines’ datasets.

In an introductory chapter, you will find:

Different types of machine learning;

Features in datasets;

Dimensionality of datasets;

The ‘curse’ of dimensionality;

Dealing with underfitting and overfitting

In the following chapters, we will implement these concepts in practice, working with clustering algorithms.

This book provides detailed explanations of several widely-used clustering approaches with visual representations:

Hierarchical agglomerative clustering;

K-means;

DBSCAN;

Neural network-based clustering

You will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.

The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.

We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

There are four major tasks for clustering:

Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.

Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.

Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.

Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines’ datasets.

In an introductory chapter, you will find:

Different types of machine learning;

Features in datasets;

Dimensionality of datasets;

The ‘curse’ of dimensionality;

Dealing with underfitting and overfitting

In the following chapters, we will implement these concepts in practice, working with clustering algorithms.

This book provides detailed explanations of several widely-used clustering approaches with visual representations:

Hierarchical agglomerative clustering;

K-means;

DBSCAN;

Neural network-based clustering

You will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.

The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.

We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 1,23 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Machine Learning with Clustering: A Visual Guide for...

Beispielbild für diese ISBN

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu PAP
Print-on-Demand

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781979086585

Verkäufer kontaktieren

Neu kaufen

EUR 19,43
Währung umrechnen
Versand: EUR 1,23
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9781979086585_new

Verkäufer kontaktieren

Neu kaufen

EUR 15,61
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu PAP
Print-on-Demand

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Bestandsnummer des Verkäufers L0-9781979086585

Verkäufer kontaktieren

Neu kaufen

EUR 17,72
Währung umrechnen
Versand: EUR 4,50
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu Paperback
Print-on-Demand

Anbieter: THE SAINT BOOKSTORE, Southport, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: New. This item is printed on demand. New copy - Usually dispatched within 5-9 working days 237. Bestandsnummer des Verkäufers C9781979086585

Verkäufer kontaktieren

Neu kaufen

EUR 18,07
Währung umrechnen
Versand: EUR 5,15
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware. Bestandsnummer des Verkäufers 9781979086585

Verkäufer kontaktieren

Neu kaufen

EUR 26,42
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kovera, Artem
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu Softcover

Anbieter: Zubal-Books, Since 1961, Cleveland, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 56 pp., paperback, new. - If you are reading this, this item is actually (physically) in our stock and ready for shipment once ordered. We are not bookjackers. Buyer is responsible for any additional duties, taxes, or fees required by recipient's country. Bestandsnummer des Verkäufers ZB1316190

Verkäufer kontaktieren

Neu kaufen

EUR 8,75
Währung umrechnen
Versand: EUR 19,53
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Artem Kovera
ISBN 10: 1979086583 ISBN 13: 9781979086585
Neu Paperback

Anbieter: CitiRetail, Stevenage, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. There are four major tasks for clustering: Making simplification for further data processing. In this case, the data is split into different groups which then are processed individually. In business, for instance, we can find different groups of customers sharing some similar features using cluster analysis. Then, we can use this information to develop different marketing strategies and apply them to all these separate groups of customers. Or, we can cluster a marketplace in a specific niche to find what kinds of products are selling better than other ones to make a decision what kind of products to produce. Usually, clustering is one of the first techniques that help explore a dataset we are going to work with to get some sense of the structure of the data.Compression of the data. We can implement cluster analysis on a giant data set. Then from each cluster, we can pick just several items. In this case, we usually lose much less information than in the case where we pick data points without preceding clustering. Clustering algorithms are being used to compress not only large data sets but also relatively small objects like images.Picking out unusual data points from the dataset. This procedure is done, for example, for the detection of fraudulent transactions with credit cards. In medicine, similar procedures can be used, for example, to identify new forms of illnesses.Building the hierarchy of objects. This is implemented for classification of biological organisms. It is also applied, for example, in search engines to group different text documents inside the search engines' datasets.In an introductory chapter, you will find: Different types of machine learning;Features in datasets;Dimensionality of datasets;The 'curse' of dimensionality;Dealing with underfitting and overfittingIn the following chapters, we will implement these concepts in practice, working with clustering algorithms.This book provides detailed explanations of several widely-used clustering approaches with visual representations: Hierarchical agglomerative clustering;K-means;DBSCAN;Neural network-based clusteringYou will learn different strengths and weaknesses of these algorithms as well as the practical strategies to overcome the weaknesses. In addition, we will briefly touch upon some other clustering methods.The examples of the algorithms are presented in Python 3. We will work with several datasets, including the ones based on real-world data.We will be primarily working with the Scikit-learn and SciPy libraries. But our neural network for clustering, we will build basically from scratch, just by using NumPy arrays. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Bestandsnummer des Verkäufers 9781979086585

Verkäufer kontaktieren

Neu kaufen

EUR 20,28
Währung umrechnen
Versand: EUR 28,98
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb