This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.
It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, the author proves sharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.
The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant – in the realm of stochastic differential equations, for example.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26376431020
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 370695795
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 18376431014
Anzahl: 1 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEOCT25-233079
Anbieter: ALLBOOKS1, Direk, SA, Australien
Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Bestandsnummer des Verkäufers SHAK233079
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020006868
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783030117627_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783030117627
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume discusses an in-depth theory of function spaces in an Euclidean setting, including several new features, not previously covered in the literature. In particular, it develops a unified theory of anisotropic Besov and Bessel potential spaces on Euclidean corners, with infinite-dimensional Banach spaces as targets.It especially highlights the most important subclasses of Besov spaces, namely Slobodeckii and Hölder spaces. In this case, no restrictions are imposed on the target spaces, except for reflexivity assumptions in duality results. In this general setting, theauthorprovessharp embedding, interpolation, and trace theorems, point-wise multiplier results, as well as Gagliardo-Nirenberg estimates and generalizations of Aubin-Lions compactness theorems.The results presented pave the way for new applications in situations where infinite-dimensional target spaces are relevant - in the realm of stochastic differential equations, for example. 480 pp. Englisch. Bestandsnummer des Verkäufers 9783030117627
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Follows the steps of Vol. I Abstract Linear Theory Features a clear and rigorous presentation styleFills a gap in literatureFollows the steps of Vol. I Abstract Linear Theory Features a cle. Bestandsnummer des Verkäufers 260928640
Anzahl: Mehr als 20 verfügbar