Verwandte Artikel zu Modern Music-Inspired Optimization Algorithms for Electric...

Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice - Softcover

 
9783030120467: Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice

Inhaltsangabe

In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. 

This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.

  • Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;
  • Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;
  • Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Mohammad Kiani-Moghaddam received the B.Sc. degree with first class honors in Electrical Engineering from the Islamic Azad University of Najafabad, Isfahan, Iran, and the M.Sc. degree with first class honors in Electrical Engineering from the Shahid Beheshti University, Tehran, Iran. His emphasis is on the research, design, and application of complex mathematical models for use in the analysis of power systems with a particular focus on risk assessment, worth-based reliability evaluation, economic strategies, as well as artificial intelligence and optimization theory. He has served as a peer reviewer for over four international journals.
Mojtaba Shivaie is currently an Assistant Professor in the Faculty of Electrical Engineering and Robotic at the Shahrood University of Technology, Shahrood, Iran. He obtained the B.Sc. degree with first class honors in Electrical Engineering from the Semnan University, Semnan, Iran, in 2008. He also receivedthe M.Sc. and Ph.D. degrees with first class honors, both in Electrical Engineering, from the Shahid Beheshti University, Tehran, Iran, in 2010 and 2015, respectively. He has worked extensively in the areas of power systems, smart distribution grids, stochastic simulation and optimization techniques, and he (with Mr. Kiani-Moghaddam and Prof. Weinsier) is the inventor of a modern optimization technique known as “symphony orchestra search algorithm” and an innovative architecture for competitive electricity markets known as “Hypaethral market”. He was awarded the Dr. Shahriari’s scholarship by the office of honor students of the Shahid Beheshti University and the Dr. Kazemi-Ashtiani’s award by the Iran’s National Elites Foundation for outstanding educational and research achievements. He has served as an editorial board of the International Transaction of Electrical and Computer Engineers System journal and the Control and Systems Engineering journal and also a peer reviewer for over twelve high impact journals. He was a recipient of the outstanding reviewer award of the Applied Soft Computing in 2014, the Energy Conversion and Management in 2016, and the Electric Power Systems Research in 2017.
Philip D. Weinsier is currently Professor and Electrical/Electronic Engineering Technology Program Director at Bowling Green State University-Firelands. He received his BS degrees in Physics/Mathematics and Industrial Education/Teaching from Berry College in 1978; MS degree in Industrial Education and EdD degree in Vocational/Technical Education from Clemson University in 1979 and 1990, respectively. He is currently senior editor of the International Journal of Modern Engineering and the International Journal of Engineering Research and Innovation, and Editor-in-Chief of the Technology Interface International Journal. He is a Fulbright Scholar, a lifetime member of the International Fulbright Association, and a member of the European Association for Research on Learning and Instruction since 1989.

Von der hinteren Coverseite

In today s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase. 

This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.

  • Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;
  • Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;
  • Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
This book is in good condition....
Diesen Artikel anzeigen

EUR 64,68 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030120436: Modern Music-Inspired Optimization Algorithms for Electric Power Systems: Modeling, Analysis and Practice

Vorgestellte Ausgabe

ISBN 10:  3030120430 ISBN 13:  9783030120436
Verlag: Springer, 2019
Hardcover

Suchergebnisse für Modern Music-Inspired Optimization Algorithms for Electric...

Foto des Verkäufers

Mohammad Kiani-Moghaddam|Mojtaba Shivaie|Philip D. Weinsier
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations researchEnhances existing architectures and deve. Bestandsnummer des Verkäufers 448673014

Verkäufer kontaktieren

Neu kaufen

EUR 180,07
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Mohammad Kiani-Moghaddam
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -In today¿s world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 756 pp. Englisch. Bestandsnummer des Verkäufers 9783030120467

Verkäufer kontaktieren

Neu kaufen

EUR 213,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Mohammad Kiani-Moghaddam
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms. 756 pp. Englisch. Bestandsnummer des Verkäufers 9783030120467

Verkäufer kontaktieren

Neu kaufen

EUR 213,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Mohammad Kiani-Moghaddam
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In today's world, with an increase in the breadth and scope of real-world engineering optimization problems as well as with the advent of big data, improving the performance and efficiency of algorithms for solving such problems has become an indispensable need for specialists and researchers. In contrast to conventional books in the field that employ traditional single-stage computational, single-dimensional, and single-homogeneous optimization algorithms, this book addresses multiple newfound architectures for meta-heuristic music-inspired optimization algorithms. These proposed algorithms, with multi-stage computational, multi-dimensional, and multi-inhomogeneous structures, bring about a new direction in the architecture of meta-heuristic algorithms for solving complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data. The architectures of these new algorithms may also be appropriate for finding an optimal solution or a Pareto-optimal solution set with higher accuracy and speed in comparison to other optimization algorithms, when feasible regions of the solution space and/or dimensions of the optimization problem increase.This book, unlike conventional books on power systems problems that only consider simple and impractical models, deals with complicated, techno-economic, real-world, large-scale models of power systems operation and planning. Innovative applicable ideas in these models make this book a precious resource for specialists and researchers with a background in power systems operation and planning.Provides an understanding of the optimization problems and algorithms, particularly meta-heuristic optimization algorithms, found in fields such as engineering, economics, management, and operations research;Enhances existing architectures and develops innovative architectures for meta-heuristic music-inspired optimization algorithms in order to deal with complicated, real-world, large-scale, non-convex, non-smooth engineering optimization problems having a non-linear, mixed-integer nature with big data;Addresses innovative multi-level, techno-economic, real-world, large-scale, computational-logical frameworks for power systems operation and planning, and illustrates practical training on implementation of the frameworks using the meta-heuristic music-inspired optimization algorithms. Bestandsnummer des Verkäufers 9783030120467

Verkäufer kontaktieren

Neu kaufen

EUR 213,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Gebraucht Softcover

Anbieter: Big River Books, Powder Springs, GA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. This book is in good condition. The cover has minor creases or bends. The binding is tight and pages are intact. Some pages may have writing or highlighting. Bestandsnummer des Verkäufers 1EYX65000LZ2_ns

Verkäufer kontaktieren

Gebraucht kaufen

EUR 155,77
Währung umrechnen
Versand: EUR 64,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783030120467_new

Verkäufer kontaktieren

Neu kaufen

EUR 226,91
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kiani-Moghaddam, Mohammad,Shivaie, Mojtaba,Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Gebraucht paperback

Anbieter: HPB-Red, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Bestandsnummer des Verkäufers S_355943542

Verkäufer kontaktieren

Gebraucht kaufen

EUR 152,23
Währung umrechnen
Versand: EUR 98,31
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 727. Bestandsnummer des Verkäufers 26380297807

Verkäufer kontaktieren

Neu kaufen

EUR 248,37
Währung umrechnen
Versand: EUR 7,76
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783030120467

Verkäufer kontaktieren

Neu kaufen

EUR 251,37
Währung umrechnen
Versand: EUR 8,62
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kiani-Moghaddam, Mohammad; Shivaie, Mojtaba; Weinsier, Philip D.
Verlag: Springer, 2020
ISBN 10: 3030120465 ISBN 13: 9783030120467
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020006950

Verkäufer kontaktieren

Neu kaufen

EUR 205,37
Währung umrechnen
Versand: EUR 64,68
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 4 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen