Fractional-order Systems and PID Controllers: Using Scilab and Curve Fitting Based Approximation Techniques (Studies in Systems, Decision and Control, 264, Band 264) - Hardcover

Buch 221 von 378: Studies in Systems, Decision and Control

Bingi, Kishore; Ibrahim, Rosdiazli; Karsiti, Mohd Noh; Hassan, Sabo Miya; Harindran, Vivekananda Rajah

 
9783030339333: Fractional-order Systems and PID Controllers: Using Scilab and Curve Fitting Based Approximation Techniques (Studies in Systems, Decision and Control, 264, Band 264)

Inhaltsangabe

This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice – and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

P. ARUN MOZHI DEVAN received the B.Eng. degree (Hons.) in electronics and instrumentation engineering from the Muthayammal Engineering College, Rasipuram, Tamil Nadu, India, in 2012, and the M.Eng. degree (Hons.) in Control and Instrumentation Engineering from Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, India, in 2016. He is currently pursuing the Ph.D. degree with the Electrical and Electronic Engineering Department, Universiti Teknologi PETRONAS, Perak, Malaysia. He was with Sri Ramakrishna Engineering College as an Assistant Professor (O.G) in the Department of Electronics and Instrumentation Engineering from 2016 to 2018. His current research interests include Fractional-order Control, wireless networked control systems, process control and optimization. FAWNIZU AZMADI HUSSIN received the bachelor's degree in Electrical engineering from the University of Minnesota, Twin Cities, Minneapolis, MN, USA, in 1999, the M.Eng. Sc. degree in Systems and Control from the University of New South Wales, Sydney, NSW, Australia, in 2001, and the Ph.D. degree in core based testing of system-on-a-chip (SoCs) from the Nara Institute of Science and Technology, Ikoma, Japan, in 2008, under the scholarship from the Japanese Government (Monbukagakusho). He is currently an Associate Professor in Electrical and Electronics Engineering at Universiti Teknologi PETRONAS, He was the Program Manager of Master by coursework program (2009-2013), the Deputy Head of Electrical & Electronic Engineering department (2013-2014) and the Director of Strategic Alliance Office (2014-2018) at UTP. He spent one year as a Visiting Professor at Intel Microelectronics (Malaysia)'s SOC DFx department in 2012-13. He is actively involved with the IEEE Malaysia Section as volunteers since 2009. He was the 2013 & 2014 Chair of the IEEE Circuits and Systems Society Malaysia Chapter and currently serving as the Chair of IEEE Malaysia Section (2019 & 2020) ROSDIAZLI IBRAHIM received the B.Eng. degree (Hons.) in Electrical Engineering from Universiti Putra Malaysia, Kembangan, Malaysia, in 1996, the M.Sc. degree (Hons.) in Automation and Control from Newcastle University, Newcastle upon Tyne, U.K., in 2000, and the Ph.D. degree in Electrical and Electronic Engineering from the University of Glasgow, U.K., in 2008. He is currently an Associate Professor with the Department of Electrical and Electronics Engineering, Universiti Teknologi Petronas (UTP), Seri Iskandar, Perak, Malaysia. He is currently the Dean with the Centre of Graduate Studies at UTP. His current research interests include intelligent control and non-linear multi-variable process modelling for control application. He is a Registered Engineer with the Board of Engineering Malaysia. KISHORE BINGI received the B.Tech. degree in Electrical and Electronics Engineering from Bapatla Engineering College, Andhra Pradesh, India, in 2012, the M.Tech.degree in Instrumentation and Control Systems from National Institute of Technology (NIT) Calicut, Kerala, India, in 2014, and the Ph.D. degree in the Department of Electrical and Electronics Engineering, Universiti Teknologi PETRONAS (UTP), Perak, Malaysia in 2019. He worked as a Research Scientist and Post-doctoral researcher in the Institute of Autonomous Systems, Universiti Teknologi PETRONAS, Perak, Malaysia from 2019 to 2020. He also worked with TATA Consultancy Service (TCS) as an Assistant Systems Engineer from 2014 to 2015. He is currently an Assistant Professor (Senior Grade) in the Department of Control & Automation, School of Electrical Engineering (SELECT), Vellore Institute of Technology, Vellore, India. His current research interests include Non-linear Process Modeling, Fractional-order Control and Optimization. M. NAGARAJAPANDIAN received his B.Eng. degree (Hons.) in Electronics and Instrumentation Engineering from Arunai Engineering Coll

Von der hinteren Coverseite

This book presents a detailed study on fractional-order, set-point, weighted PID control strategies and the development of curve-fitting-based approximation techniques for fractional-order parameters. Furthermore, in all the cases, it includes the Scilab-based commands and functions for easy implementation and better understanding, and to appeal to a wide range of readers working with the software. The presented Scilab-based toolbox is the first toolbox for fractional-order systems developed in open-source software. The toolboxes allow time and frequency domains as well as stability analysis of the fractional-order systems and controllers. The book also provides real-time examples of the control of process plants using the developed fractional-order based PID control strategies and the approximation techniques. The book is of interest to readers in the areas of fractional-order controllers, approximation techniques, process modeling, control, and optimization, both in industry and academia. In industry, the book is particularly valuable in the areas of research and development (R&D) as well as areas where PID controllers suffice – and it should be noted that around 80% of low-level controllers in industry are PID based. The book is also useful where conventional PIDs are constrained, such as in industries where long-term delay and non-linearity are present. Here it can be used for the design of controllers for real-time processes. The book is also a valuable teaching and learning resource for undergraduate and postgraduate students.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9783030339364: Fractional-order Systems and PID Controllers: Using Scilab and Curve Fitting Based Approximation Techniques (Studies in Systems, Decision and Control, Band 264)

Vorgestellte Ausgabe

ISBN 10:  303033936X ISBN 13:  9783030339364
Verlag: Springer, 2020
Softcover