This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications.
The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt.
The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Boris Belousov is a Ph.D. student at Technische Universität Darmstadt, Germany, advised by Prof. Jan Peters. He received his M.Sc. degree from the University of Erlangen-Nuremberg, Germany, in 2016, supported by a DAAD scholarship for academic excellence. Boris is now working toward combining optimal control and information theory with applications to robotics and reinforcement learning.
Hany Abdulsamad is a Ph.D. student at the TU Darmstadt, Germany. He graduated with a Master’s degree in Automation and Control from the faculty of Electrical Engineering and Information Technology at the TU Darmstadt. His research interests range from optimal control and trajectory optimization to reinforcement learning and robotics. Hany’s current research focuses on learning hierarchical structures for system identification and control.
After graduating with a Master’s degree in Autonomous Systems from the Technische Universität Darmstadt, Pascal Klink pursued his Ph.D. studies at the Intelligent Autonomous Systems Group of the TU Darmstadt, where he developed methods for reinforcement learning in unstructured, partially observable real-world environments. Currently, he is investigating curriculum learning methods and how to use them to facilitate learning in these environments.Simone Parisi joined Prof. Jan Peter’s Intelligent Autonomous System lab in October 2014 as a Ph.D. student. Before pursuing his Ph.D., Simone completed his M.Sc. in Computer Science Engineering at the Politecnico di Milano, Italy, and at the University of Queensland, Australia, under the supervision of Prof. Marcello Restelli and Dr. Matteo Pirotta. Simone is currently working to develop reinforcement learning algorithms that can achieve autonomous learning in real-world tasks with little to no human intervention. His research interests include, among others, reinforcement learning, robotics, dimensionality reduction, exploration, intrinsic motivation, and multi-objective optimization. He has collaborated with Prof. Emtiyaz Khan and Dr. Voot Tangkaratt of RIKEN AIP in Tokyo, and his work has been presented at universities and research institutes in the US, Germany, Japan, and Holland.
Jan Peters is a Full Professor of Intelligent Autonomous Systems at the Computer Science Department of the Technische Universität Darmstadt and an adjunct senior research scientist at the Max-Planck Institute for Intelligent Systems, where he heads the Robot Learning Group (combining the Empirical Inference and Autonomous Motion departments). Jan Peters has received numerous awards, most notably the Dick Volz Best US PhD Thesis Runner Up Award, the Robotics: Science & Systems - Early Career Spotlight Award, the IEEE Robotics & Automation Society’s Early Career Award, and the International Neural Networks Society’s Young Investigator Award.
This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications.
The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt.
The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 216 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 37099000/1
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides recent research on reinforcement learning algorithms Presents the analysis and application alike Written by respected experts in the field Boris Belousov is a Ph.D. student at Technische. Bestandsnummer des Verkäufers 448681599
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications.The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt.The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Bestandsnummer des Verkäufers 9783030411879
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience. Bestandsnummer des Verkäufers 9783030411879
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book reviews research developments in diverse areas of reinforcement learning such as model-free actor-critic methods, model-based learning and control, information geometry of policy searches, reward design, and exploration in biology and the behavioral sciences. Special emphasis is placed on advanced ideas, algorithms, methods, and applications. The contributed papers gathered here grew out of a lecture course on reinforcement learning held by Prof. Jan Peters in the winter semester 2018/2019 at Technische Universität Darmstadt. The book is intended for reinforcement learning students and researchers with a firm grasp of linear algebra, statistics, and optimization. Nevertheless, all key concepts are introduced in each chapter, making the content self-contained and accessible to a broader audience. 216 pp. Englisch. Bestandsnummer des Verkäufers 9783030411879
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783030411879_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783030411879
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020016836
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 214 pages. 9.25x6.10x9.21 inches. In Stock. Bestandsnummer des Verkäufers x-3030411877
Anzahl: 2 verfügbar
Anbieter: Mispah books, Redhill, SURRE, Vereinigtes Königreich
Hardcover. Zustand: New. New. book. Bestandsnummer des Verkäufers ERICA77330304118776
Anzahl: 1 verfügbar