This book provides detailed descriptions of big data solutions for activity detection and forecasting of very large numbers of moving entities spread across large geographical areas. It presents state-of-the-art methods for processing, managing, detecting and predicting trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating and noisy data streams from moving entities, correlating them with data from archived data sources expressing e.g. entities’ characteristics, geographical information, mobility patterns, mobility regulations and intentional data.
The book is divided into six parts: Part I discusses the motivation and background of mobility forecasting supported by trajectory-oriented analytics, and includes specific problems and challenges in the aviation (air-traffic management) and the maritime domains. Part II focuses on big data quality assessment and processing, and presents novel technologies suitable for mobility analytics components. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Part IV focuses on mobility analytics methods exploiting (online) processed, synopsized and enriched data streams as well as (offline) integrated, archived mobility data, and highlights future location and trajectory prediction methods, distinguishing between short-term and more challenging long-term predictions. Part V examines how methods addressing data management, data processing and mobility analytics are integrated in big data architectures with distinctive characteristics compared to other known big data paradigmatic architectures. Lastly, Part VI covers important ethical issues that research on mobility analytics should address.
Providing novel approaches and methodologies related to mobility detection and forecasting needs based on big data exploration, processing, storage, and analysis, this book will appeal to computer scientists and stakeholders in various application domains.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
George Vouros is a Professor at the Department of Digital Systems, University of Piraeus, where he also heads the AI Lab. He has conducted extensive research in the areas of expert systems, knowledge management, knowledge representation and reasoning with ontologies, multi-agent systems and reinforcement learning. He also coordinated the datAcron Big Data project (H2020 ICT-16), on which this book is based.
Dr. Gennady Andrienko is a lead scientist responsible for visual analytics research at the Fraunhofer Institute IAIS (Sankt Augustin, Germany) and Full Professor at City University London. He has co-authored two monographs “Exploratory Analysis of Spatial and Temporal Data” (Springer, 2006) and “Visual Analytics of Movement” (Springer, 2013) and ca. 100 peer-reviewed journal papers. Gennady Andrienko received the Test of Time award at IEEE VAST 2018 and best paper awards at the AGILE 2006, IEEE VAST 2011 and 2012 conferences and EuroVA 2018 workshop.
Christos Doulkeridis is an Assistant Professor at the Department of Digital Systems at the University of Piraeus. He had been awarded both a Marie Curie fellowship and an ERCIM “Allain Bensoussan” fellowship for post-doctoral studies at the Norwegian University of Science and Technology. His research interests include big data management, parallel and distributed query processing, as well as indexing of spatial, spatio-temporal, and spatio-textual data.
Nikolaos Pelekis is an Associate Professor at the Department of Statistics and Insurance Science, University of Piraeus, Greece. His research interests include all aspects of data science, particularly mobility data management and mining. Nikos has co-authored one monograph and more than 100 refereed articles in scientific journals and conference proceedings, has received three best paper awards and won the SemEval’17 competition.
Alexander Artikis is an Assistant Professor at the University of Piraeus and a Research Associate at the National Centre for Scientific Research (NCSR) “Demokritos,” where he leads the Complex Event Recognition group. His research interests lie in the fields of artificial intelligence and distributed systems. Most of his work has been on (norm-governed) multi-agent systems and complex event recognition.
Anne‐Laure Jousselme works at the NATO Centre for Maritime Research and Experimentation in La Spezia, Italy, and serves on the Boards of Directors of the International Society of Information Fusion and the Belief Functions and Applications Society. Her research interests include maritime anomaly detection, information fusion, reasoning under uncertainty, and information quality.
Cyril Ray is an Associate Professor of Computer Science at Arts & Métiers – ParisTech, attached to the Naval Academy Research Institute (IRENav) in France. His current research focus is on the modelling and design of location-based services. His work mainly concerns theoretical aspects of the design of ubiquitous and adaptive location-based services applied to human mobility, maritime and urban transportation systems.
José Manuel Cordero is a Principal Researcher at CRIDA (ATM R&D Reference Centre, attached to the Spanish ANSP, ENAIRE) in Madrid, with extensive experience in the Air Traffic Management domain in the areas of operational performance monitoring and management, advanced computing in data analysis, and data-driven modelling. He has led a number of research projects such as SESAR Performance Management. José Manuel has co-authored more than 30 peer-reviewed papers in journals and conferences, receiving two best paper awards. He also received the Jane’ ATC Environment Award recognizing achievements in green ATM concepts. Since August 2019, he has also been appointed as a member of the EUROCONTROL Performance Review Commission.
David Scarlatti is a Data Solutions Architect at Boeing Research & Technology Europe in the Aerospace Operational Efficiency group, where he applies data analytics technologies to a wide range of aviation-related problems. His fields of expertise include big data analysis, data visualization, cyber security and human-machine interfaces.
This book provides detailed descriptions of big data solutions for activity detection and forecasting of very large numbers of moving entities spread across large geographical areas. It presents state-of-the-art methods for processing, managing, detecting and predicting trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating and noisy data streams from moving entities, correlating them with data from archived data sources expressing e.g. entities' characteristics, geographical information, mobility patterns, mobility regulations and intentional data.
The book is divided into six parts: Part I discusses the motivation and background of mobility forecasting supported by trajectory-oriented analytics, and includes specific problems and challenges in the aviation (air-traffic management) and the maritime domains. Part II focuses on big data quality assessment and processing, and presents novel technologies suitable for mobility analytics components. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Part IV focuses on mobility analytics methods exploiting (online) processed, synopsized and enriched data streams as well as (offline) integrated, archived mobility data, and highlights future location and trajectory prediction methods, distinguishing between short-term and more challenging long-term predictions. Part V examines how methods addressing data management, data processing and mobility analytics are integrated in big data architectures with distinctive characteristics compared to other known big data paradigmatic architectures. Lastly, Part VI covers important ethical issues that research on mobility analytics should address.
Providing novel approaches and methodologies related to mobility detection and forecasting needs based on big data exploration, processing, storage, and analysis, this book will appeal to computer scientists and stakeholders in various application domains.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 30,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 3,45 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
XXXII, 361 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Bestandsnummer des Verkäufers 10183GB
Anzahl: 2 verfügbar
Anbieter: SpringBooks, Berlin, Deutschland
Hardcover. Zustand: Very Good. 1. Auflage. unread, with some shelfwear. Bestandsnummer des Verkäufers CE-2307C-WISENT-11-1000
Anzahl: 1 verfügbar
Anbieter: killarneybooks, Inagh, CLARE, Irland
Hardcover. Zustand: Very Good. 1st Edition. Hardcover, xxxii + 361 pages, NOT ex-library. Interior is clean and bright with unmarked text, free of inscriptions and stamps, firmly bound. Minor handling marks on page edges externally. Boards show shelfwear and small indentations to edges. Issued without a dust jacket. Bestandsnummer des Verkäufers 008063
Anzahl: 1 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020018245
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 41495690-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. This book provides detailed descriptions of big data solutions for activity detection and forecasting of very large numbers of moving entities spread across large geographical areas. It presents state-of-the-art methods for processing, managing, detecting and predicting trajectories and important events related to moving entities, together with advanced visual analytics methods, over multiple heterogeneous, voluminous, fluctuating and noisy data streams from moving entities, correlating them with data from archived data sources expressing e.g. entities characteristics, geographical information, mobility patterns, mobility regulations and intentional data. The book is divided into six parts: Part I discusses the motivation and background of mobility forecasting supported by trajectory-oriented analytics, and includes specific problems and challenges in the aviation (air-traffic management) and the maritime domains. Part II focuses on big data quality assessment and processing, and presents novel technologies suitable for mobility analytics components. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Part IV focuses on mobility analytics methods exploiting (online) processed, synopsized and enriched data streams as well as (offline) integrated, archived mobility data, and highlights future location and trajectory prediction methods, distinguishing between short-term and more challenging long-term predictions. Part V examines how methods addressing data management, data processing and mobility analytics are integrated in big data architectures with distinctive characteristics compared to other known big data paradigmatic architectures. Lastly, Part VI covers important ethical issues that research on mobility analytics should address.Providing novel approaches and methodologies related to mobility detection and forecasting needs based on big data exploration, processing, storage, and analysis, this book will appeal to computer scientists and stakeholders in various application domains. Next, Part III describes solutions toward processing and managing big spatio-temporal data, particularly enriching data streams and integrating streamed and archival data to provide coherent views of mobility, and storing of integrated mobility data in large distributed knowledge graphs for efficient query-answering. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783030451639
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783030451639_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 41495690-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 41495690
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Provides comprehensive descriptions of big data solutions for activity detection and forecasting very large numbers of moving entities spread across large geographical areasDetails novel approaches and methodologies for mobility detectio. Bestandsnummer des Verkäufers 377722644
Anzahl: Mehr als 20 verfügbar