Verwandte Artikel zu Probabilistic Graphical Models: Principles and Applications...

Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition) - Softcover

 
9783030619459: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Inhaltsangabe

This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.  It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.

The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.

Topics and features:

  • Presents a unified framework encompassing all of the main classes of PGMs
  • Explores the fundamental aspects of representation, inference and learning for each technique
  • Examines new material on partially observable Markov decision processes, and graphical models
  • Includes a new chapter introducing deep neural networks and their relation with probabilistic graphical models 
  • Covers multidimensional Bayesian classifiers, relational graphical models, and causal models
  • Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects
  • Describes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks
  • Outlines the practical application of the different techniques
  • Suggests possible course outlines for instructors

This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.

Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Dr. Luis Enrique Sucar is a Senior Research Scientist in the Department of Computing at the National Institute of Astrophysics, Optics and Electronics (INAOE), Mexico.

Von der hinteren Coverseite

<p>This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective.&nbsp; It features new material on partially observable Markov decision processes, graphical models, and deep learning, as well as an even greater number of exercises.<br></p>The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.<p></p><p><b>Topics and features:</b></p><ul><li>Presents a unified framework encompassing all of the main classes of PGMs</li><li>Explores the fundamental aspects of representation, inference and learning for each technique</li><li>Examines new material on partially observable Markov decision processes, and graphical models</li><li>Includes&nbsp;a new chapter introducing deep neural networks and their relation with probabilistic graphical models&nbsp;</li><li>Covers multidimensional Bayesian classifiers, relational graphical models, and causal models<br></li><li>Provides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projects</li><li></li><li>Describes classifiers such as Gaussian Naive Bayes,&nbsp;Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian Networks</li><li>Outlines the practical application of the different techniques</li><li>Suggests possible course outlines for instructors</li></ul><p>This classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.</p><p><b>Dr. Luis Enrique Sucar</b> is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.</p><p></p>

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 16,97 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030619428: Probabilistic Graphical Models: Principles and Applications (Advances in Computer Vision and Pattern Recognition)

Vorgestellte Ausgabe

ISBN 10:  3030619427 ISBN 13:  9783030619428
Verlag: Springer, 2020
Hardcover

Suchergebnisse für Probabilistic Graphical Models: Principles and Applications...

Foto des Verkäufers

Sucar, Luis Enrique
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 541924678

Verkäufer kontaktieren

Neu kaufen

EUR 47,23
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sucar
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Basi6 International, Irving, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-260020

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sucar, Luis Enrique
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 18394680905

Verkäufer kontaktieren

Neu kaufen

EUR 48,59
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sucar/Luis Enrique
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Basi6 International, Irving, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-385268

Verkäufer kontaktieren

Neu kaufen

EUR 51,44
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Luis Enrique Sucar
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.Topics and features:Presents a unified framework encompassing all of the main classes of PGMsExplores the fundamental aspects of representation, inference and learning for each techniqueExamines new material on partially observable Markov decision processes, and graphical modelsIncludes a new chapter introducing deep neural networks and their relation with probabilistic graphical modelsCovers multidimensional Bayesian classifiers, relational graphical models, and causal modelsProvides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projectsDescribes classifiers such as Gaussian Naive Bayes, Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian NetworksOutlines the practical application of the different techniquesSuggests possible course outlines for instructorsThis classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.Dr. Luis Enrique Sucar is a Senior Research Scientist at the National Institute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico. He received the National Science Prize en 2016.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 384 pp. Englisch. Bestandsnummer des Verkäufers 9783030619459

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Luis Enrique Sucar
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.Topics and features:Presents a unified framework encompassing all of the main classes of PGMsExplores the fundamental aspects of representation, inference and learning for each techniqueExamines new material on partially observable Markov decision processes, and graphical modelsIncludesa new chapter introducing deep neural networks and their relation with probabilistic graphical modelsCovers multidimensional Bayesian classifiers, relational graphical models, and causal modelsProvides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projectsDescribes classifiers such as Gaussian Naive Bayes,Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian NetworksOutlines the practical application of the different techniquesSuggests possible course outlines for instructorsThis classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.Dr. Luis Enrique Sucar is a Senior Research Scientist at the NationalInstitute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.He received the National Science Prize en 2016. Bestandsnummer des Verkäufers 9783030619459

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Luis Enrique Sucar
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This fully updated new edition of a uniquely accessible textbook/reference provides a general introduction to probabilistic graphical models (PGMs) from an engineering perspective. It features new material on partially observable Markov decision processes, causal graphical models, causal discovery and deep learning, as well as an even greater number of exercises; it also incorporates a software library for several graphical models in Python.The book covers the fundamentals for each of the main classes of PGMs, including representation, inference and learning principles, and reviews real-world applications for each type of model. These applications are drawn from a broad range of disciplines, highlighting the many uses of Bayesian classifiers, hidden Markov models, Bayesian networks, dynamic and temporal Bayesian networks, Markov random fields, influence diagrams, and Markov decision processes.Topics and features:Presents a unified framework encompassing all of the main classes of PGMsExplores the fundamental aspects of representation, inference and learning for each techniqueExamines new material on partially observable Markov decision processes, and graphical modelsIncludesa new chapter introducing deep neural networks and their relation with probabilistic graphical modelsCovers multidimensional Bayesian classifiers, relational graphical models, and causal modelsProvides substantial chapter-ending exercises, suggestions for further reading, and ideas for research or programming projectsDescribes classifiers such as Gaussian Naive Bayes,Circular Chain Classifiers, and Hierarchical Classifiers with Bayesian NetworksOutlines the practical application of the different techniquesSuggests possible course outlines for instructorsThis classroom-tested work is suitable as a textbook for an advanced undergraduate or a graduate course in probabilistic graphical models for students of computer science, engineering, and physics. Professionals wishing to apply probabilistic graphical models in their own field, or interested in the basis of these techniques, will also find the book to be an invaluable reference.Dr. Luis Enrique Sucar is a Senior Research Scientist at the NationalInstitute for Astrophysics, Optics and Electronics (INAOE), Puebla, Mexico.He received the National Science Prize en 2016. 384 pp. Englisch. Bestandsnummer des Verkäufers 9783030619459

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sucar, Luis Enrique
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 2nd ed. 2021 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26394680899

Verkäufer kontaktieren

Neu kaufen

EUR 46,65
Währung umrechnen
Versand: EUR 7,64
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Sucar, Luis Enrique
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 401728924

Verkäufer kontaktieren

Neu kaufen

EUR 45,38
Währung umrechnen
Versand: EUR 10,26
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

SUCAR
Verlag: Springer, 2021
ISBN 10: 3030619451 ISBN 13: 9783030619459
Neu Softcover

Anbieter: Basi6 International, Irving, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-260022

Verkäufer kontaktieren

Neu kaufen

EUR 58,03
Währung umrechnen
Versand: Gratis
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen