Verwandte Artikel zu Machine Learning for Computer Scientists and Data Analysts:...

Machine Learning for Computer Scientists and Data Analysts: From an Applied Perspective - Softcover

 
9783030967581: Machine Learning for Computer Scientists and Data Analysts: From an Applied Perspective

Inhaltsangabe

This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve. In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases. Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Sai Manoj P D is an assistant professor at George Mason University. Prior joining to George Mason University, he was a post-doctoral research scientist at the System-on-Chip group, Institute of Computer Technology, Vienna University of Technology (TU Wien), Austria. He received his Ph.D. in Electrical and Electronics Engineering from Nanyang Technological University, Singapore in 2015. He received his master’s in Information Technology from International Institute of Information Technology Bangalore (IIITB), Bangalore, India in 2012. His research interests include on-chip hardware security, neuromorphic computing, adversarial machine learning, self-aware SoC design, image processing and time-series analysis, emerging memory devices and heterogeneous integration techniques. One of his works is nominated for Best Paper Award in Design Automation & Test in Europe (DATE) 2018 and won Xilinx open hardware contest in 2017 (student category). He is the recipient of the “A. Richard Newton Young Research Fellow” award in Design Automation Conference, 2013.

           

Setareh Rafatirad is an Associate Professor in Department of Information Sciences and Technology at George Mason University. She obtained her M.Sc. and PhD in Computer Science from University of California, Irvine in 2009 and 2012. Her research interest covers several areas including Big Data Analytics, Data Mining, Knowledge Discovery and Knowledge Representation, Image Understanding, Multimedia Information Retrieval, and Applied Machine Learning. Currently, she is actively supervising multiple research projects focused on applying ML and Deep Learning techniques on different domains including House Price Prediction, Malware Detection, and Emerging big data application benchmarking and characterization on heterogeneous architectures.

           

Houman Homayoun is anAssistant Professor in the Department of Electrical and Computer Engineering at George Mason University. He also holds a courtesy appointment with the Department of Computer Science as well as Information Science and Technology Department. Houman joined GMU as a tenure-track Assistant Professor in August 2012. Prior to joining GMU, Houman spent two years at the University of California, San Diego, as NSF Computing Innovation (CI) Fellow awarded by the CRA-CCC working with Professor Dean Tullsen. Houman graduated in 2010 from University of California, Irvine with a Ph.D. in Computer Science. He was a recipient of the four-year University of California, Irvine Computer Science Department chair fellowship. His dissertation, entitled “Beyond Memory Cells for Leakage and Temperature Control in SRAM-based Units, the Peripheral Circuits Story”, was supervised by Professor Alex Veidenbaum from CS Department, and Professor Jean-Luc Gaudiot, and Professor Fadi Kurdahi from ECE Department. Out ofthirty-one doctoral dissertations his work was nominated for 2010 ACM Doctoral Dissertation Award. Houman received the MS degree in computer engineering in 2005 from University of Victoria and BS degree in electrical engineering in 2003 from Sharif University of Technology. Houman conduct research in big data computing, heterogeneous computing and hardware security and trust, which spans the areas of computer design and embedded systems, where he has published more than 80 technical papers in the prestigious conferences and journals on the subject. He is currently leading six research projects funded by DARPA, AFRL and NSF on the topics of hardware security and trust, big data computing, heterogeneous architectures, and biomedical computing. Houman received the 2016 GLSVLSI conference best paper award for developing a manycore accelerator for wearable biomedical computing. Houman is currently serving as Member of Advisory Committee, Cybersecurity Research and Technology Commercialization (R&TC) working group in the Commonwealth of Virginia. Since 2017 he has been serving as an Associate Editor of IEEE Transactions on VLSI. He served as TPC Co-Chair for GLSVLSI 2018. He is currently the general chair of GLSVLSI 2019.

Von der hinteren Coverseite

This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve. In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases. Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications.

Describes traditional as well as advanced machine learning algorithms;

Enables students to learn which algorithm is most appropriate for the data being handled;

Includes numerous, practical case-studies; implementation codes in Python available for readers;

Uses examples and exercises to reinforce concepts introduced and develop skills.

 


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Befriedigend
May show signs of wear, highlighting...
Diesen Artikel anzeigen

EUR 17,35 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

EUR 5,77 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030967550: Machine Learning for Computer Scientists and Data Analysts: From an Applied Perspective

Vorgestellte Ausgabe

ISBN 10:  3030967557 ISBN 13:  9783030967550
Verlag: Springer-Verlag GmbH, 2022
Hardcover

Suchergebnisse für Machine Learning for Computer Scientists and Data Analysts:...

Beispielbild für diese ISBN

RAFATIRAD, SETAREH
Verlag: Springer, 2023
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Softcover

Anbieter: Speedyhen, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: NEW. Bestandsnummer des Verkäufers NW9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 66,13
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Houman Homayoun
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 73,57
Währung umrechnen
Versand: EUR 4,56
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

Setareh Rafatirad|Houman Homayoun|Zhiqian Chen|Sai Manoj Pudukotai Dinakarrao
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Describes traditional as well as advanced machine learning algorithmsEnables students to learn which algorithm is most appropriate for the data being handledIncludes numerous, practical case-studies implementation codes in Python available. Bestandsnummer des Verkäufers 872378647

Verkäufer kontaktieren

Neu kaufen

EUR 80,77
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Houman Homayoun
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu PAP

Anbieter: PBShop.store US, Wood Dale, IL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers GB-9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 80,12
Währung umrechnen
Versand: EUR 0,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 3 verfügbar

In den Warenkorb

Foto des Verkäufers

Rafatirad, Setareh; Homayoun, Houman; Chen, Zhiqian; Dinakarrao, Sai Manoj Pudukotai
Verlag: Springer, 2023
ISBN 10: 3030967581 ISBN 13: 9783030967581
Gebraucht Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Bestandsnummer des Verkäufers 46067798-5

Verkäufer kontaktieren

Gebraucht kaufen

EUR 66,62
Währung umrechnen
Versand: EUR 17,35
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Rafatirad, Setareh; Homayoun, Houman; Chen, Zhiqian; Pudukotai Dinakarrao, Sai Manoj
Verlag: Springer, 2023
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783030967581_new

Verkäufer kontaktieren

Neu kaufen

EUR 79,14
Währung umrechnen
Versand: EUR 5,76
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Setareh Rafatirad
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve.In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases.Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications. Bestandsnummer des Verkäufers 9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 85,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Setareh Rafatirad
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve.In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases.Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications. 476 pp. Englisch. Bestandsnummer des Verkäufers 9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 85,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Setareh Rafatirad
ISBN 10: 3030967581 ISBN 13: 9783030967581
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This textbook introduces readers to the theoretical aspects of machine learning (ML) algorithms, starting from simple neuron basics, through complex neural networks, including generative adversarial neural networks and graph convolution networks. Most importantly, this book helps readers to understand the concepts of ML algorithms and enables them to develop the skills necessary to choose an apt ML algorithm for a problem they wish to solve. In addition, this book includes numerous case studies, ranging from simple time-series forecasting to object recognition and recommender systems using massive databases. Lastly, this book also provides practical implementation examples and assignments for the readers to practice and improve their programming capabilities for the ML applications.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. Bestandsnummer des Verkäufers 9783030967581

Verkäufer kontaktieren

Neu kaufen

EUR 85,59
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Rafatirad, Setareh; Homayoun, Houman; Chen, Zhiqian; Dinakarrao, Sai Manoj Pudukotai
Verlag: Springer, 2023
ISBN 10: 3030967581 ISBN 13: 9783030967581
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: good. May show signs of wear, highlighting, writing, and previous use. This item may be a former library book with typical markings. No guarantee on products that contain supplements Your satisfaction is 100% guaranteed. Twenty-five year bookseller with shipments to over fifty million happy customers. Bestandsnummer des Verkäufers 46067798-5

Verkäufer kontaktieren

Gebraucht kaufen

EUR 72,33
Währung umrechnen
Versand: EUR 17,10
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 6 verfügbar

In den Warenkorb

Es gibt 15 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen