Verwandte Artikel zu Deep Statistical Comparison for Meta-heuristic Stochastic...

Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms (Natural Computing Series) - Softcover

 
9783030969196: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms (Natural Computing Series)

Inhaltsangabe

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.

The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:

Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Tome Eftimov is currently a research fellow at the Jožef Stefan Institute, Ljubljana, Slovenia where he was awarded his PhD. He has since been a postdoctoral research fellow at the Dept. of Biomedical Data Science, and the Centre for Population Health Sciences, Stanford University, USA, and a research associate at the University of California, San Francisco, USA. His main areas of research include statistics, natural language processing, heuristic optimization, machine learning, and representational learning. His work related to benchmarking in computational intelligence is focused on developing more robust statistical approaches that can be used for the analysis of experimental data. 

Peter Korošec received his PhD degree from the Jožef Stefan Postgraduate School, Ljubljana, Slovenia. Since 2002 he has been a researcher at the Computer Systems Department of the Jožef Stefan Institute, Ljubljana. He has participated in the organization of various conferencesworkshops as program chair or organizer. He has successfully applied his optimization approaches to several real-world problems in engineering. Recently, he has focused on better understanding optimization algorithms so that they can be more efficiently selected and applied to real-world problems. 

The authors have presented the related tutorial at the significant related international conferences in Evolutionary Computing, including GECCO, PPSN, and SSCI.

Von der hinteren Coverseite

Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.

The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:

Part I: Introduction to optimization, benchmarking, and statistical analysis – Chapters 2-4.
Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms – Chapters 5-7.
Part III: Implementation and application of Deep Statistical Comparison – Chapter 8.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Hervorragend | Seiten:...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783030969165: Deep Statistical Comparison for Meta-heuristic Stochastic Optimization Algorithms (Natural Computing Series)

Vorgestellte Ausgabe

ISBN 10:  3030969169 ISBN 13:  9783030969165
Verlag: Springer, 2022
Hardcover

Suchergebnisse für Deep Statistical Comparison for Meta-heuristic Stochastic...

Beispielbild für diese ISBN

Peter Koro¿ec, Tome Eftimov
ISBN 10: 3030969193 ISBN 13: 9783030969196
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 152 | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 41826443/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 107,45
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Eftimov, Tome|Korosec, Peter
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Kartoniert / Broschiert

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Bestandsnummer des Verkäufers 877455768

Verkäufer kontaktieren

Neu kaufen

EUR 127,40
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Peter Koro¿ec
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Focusing on comprehensive comparisons of the performance of stochastic optimization algorithms, this book provides an overview of the current approaches used to analyze algorithm performance in a range of common scenarios, while also addressing issues that are often overlooked. In turn, it shows how these issues can be easily avoided by applying the principles that have produced Deep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examples from a recently developed web-service-based e-learning tool (DSCTool) are presented. The tool provides users with all the functionalities needed to make robust statistical comparison analyses in various statistical scenarios.The book is intended for newcomers to the field and experienced researchers alike. For newcomers, it covers the basics of optimization and statistical analysis, familiarizing them with the subject matter before introducing the Deep Statistical Comparison approach. Experienced researchers can quickly move on to the content on new statistical approaches. The book is divided into three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis ¿ Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms ¿ Chapters 5-7.Part III: Implementation and application of Deep Statistical Comparison ¿ Chapter 8.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 152 pp. Englisch. Bestandsnummer des Verkäufers 9783030969196

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Peter Koro¿ec
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Focusing oncomprehensive comparisonsof the performance of stochastic optimization algorithms, this book provides an overview of the current approachesused to analyzealgorithm performancein a range of commonscenarios, while also addressingissues that are often overlooked.In turn, itshows how these issues can be easily avoided by applyingtheprinciplesthat have producedDeep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examplesfroma recently developed web-service-based e-learning tool(DSCTool) arepresented. The toolprovides users with all the functionalities needed to makerobust statistical comparison analysesinvariousstatistical scenarios.The book isintendedfornewcomers to the field and experienced researchers alike. For newcomers, it coversthe basicsofoptimization and statistical analysis,familiarizing themwith thesubject matterbefore introducingthe Deep Statistical Comparison approach. Experienced researcherscan quickly move on to the content on newstatistical approaches.The book is dividedinto three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7.Part III: Implementation and applicationof DeepStatistical Comparison - Chapter 8. Bestandsnummer des Verkäufers 9783030969196

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Peter Koro¿ec
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Focusing oncomprehensive comparisonsof the performance of stochastic optimization algorithms, this book provides an overview of the current approachesused to analyzealgorithm performancein a range of commonscenarios, while also addressingissues that are often overlooked.In turn, itshows how these issues can be easily avoided by applyingtheprinciplesthat have producedDeep Statistical Comparison and its variants. The focus is on statistical analyses performed using single-objective and multi-objective optimization data. At the end of the book, examplesfroma recently developed web-service-based e-learning tool(DSCTool) arepresented. The toolprovides users with all the functionalities needed to makerobust statistical comparison analysesinvariousstatistical scenarios.The book isintendedfornewcomers to the field and experienced researchers alike. For newcomers, it coversthe basicsofoptimization and statistical analysis,familiarizing themwith thesubject matterbefore introducingthe Deep Statistical Comparison approach. Experienced researcherscan quickly move on to the content on newstatistical approaches.The book is dividedinto three parts:Part I: Introduction to optimization, benchmarking, and statistical analysis - Chapters 2-4.Part II: Deep Statistical Comparison of meta-heuristic stochastic optimization algorithms - Chapters 5-7.Part III: Implementation and applicationof DeepStatistical Comparison - Chapter 8. 152 pp. Englisch. Bestandsnummer des Verkäufers 9783030969196

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Eftimov, Tome; Koro?ec, Peter
Verlag: Springer, 2023
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783030969196_new

Verkäufer kontaktieren

Neu kaufen

EUR 153,05
Währung umrechnen
Versand: EUR 5,74
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Eftimov, Tome; Koro?ec, Peter
Verlag: Springer, 2023
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 26396414456

Verkäufer kontaktieren

Neu kaufen

EUR 180,16
Währung umrechnen
Versand: EUR 7,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Eftimov, Tome; Koro?ec, Peter
Verlag: Springer, 2023
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783030969196

Verkäufer kontaktieren

Neu kaufen

EUR 183,32
Währung umrechnen
Versand: EUR 8,60
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Eftimov, Tome; Koro?ec, Peter
Verlag: Springer, 2023
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396414450

Verkäufer kontaktieren

Neu kaufen

EUR 194,69
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Eftimov, Tome; Koro?ec, Peter
Verlag: Springer, 2023
ISBN 10: 3030969193 ISBN 13: 9783030969196
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 399995431

Verkäufer kontaktieren

Neu kaufen

EUR 190,74
Währung umrechnen
Versand: EUR 10,21
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen