Verwandte Artikel zu Cohesive Subgraph Search Over Large Heterogeneous Informatio...

Cohesive Subgraph Search Over Large Heterogeneous Information Networks (SpringerBriefs in Computer Science) - Softcover

 
9783030975678: Cohesive Subgraph Search Over Large Heterogeneous Information Networks (SpringerBriefs in Computer Science)

Inhaltsangabe

This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.

The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.

This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Yixiang Fang is an associate professor in the School of Data Science, Chinese University of Hong Kong, Shenzhen. He received PhD in computer science from the University of Hong Kong in 2017. After that, he worked as a research associate in the School of Computer Science and Engineering, University of New SouthWales, with Prof. Xuemin Lin. His research interests include querying, mining, and analytics of big graph data and big spatial data. He has published extensively in the areas of database and data mining, and most of his papers were published in toptier conferences (e.g., PVLDB, SIGMOD, ICDE, NeurIPS, and IJCAI) and journals(e.g., TODS, VLDBJ, and TKDE), and one paper was selected as best paper at SIGMOD 2020. He received the 2021 ACM SIGMOD Research Highlight Award. Yixiang is an editorial board member of the journal Information & Processing Management (IPM). He has also served as program committeemember for several top conferences (e.g., ICDE, KDD, AAAI, and IJCAI) and invited reviewer for top journals (e.g., TKDE, VLDBJ, and TOC) in the areas of database and data mining.
Kai Wang is an Assistant Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He received his BSc degree from Zhejiang University in 2016 and his PhD degree from the University of New South Wales in 2020, both in computer science. His research interests lie in big data analytics, especially for the big graph and spatial data. Most of his research works have been publishedin top-tier database conferences (e.g., SIGMOD, PVLDB, and ICDE) and journals (e.g., VLDBJ and TKDE).
Xuemin Lin is a Chair Professor at Antai College of Economics & Management, Shanghai Jiao Tong University. He is a Fellow of IEEE. He received his BSc degree in applied math from Fudan University in 1984 and his PhD degree in computer science from the University of Queensland in 1992. Currently, he is the editorin-chief of IEEE Transactions on Knowledge and Data Engineering. His principal research areas are databases and graph visualization.
Wenjie Zhang is a professor and ARC Future Fellow in the School of Computer Science and Engineering at the University of New South Wales in Australia. She received her PhD from the University of New South Wales in 2010. She is an associate editor of IEEE Transactions on Knowledge and Data Engineering. Her research interests lie in large-scale data processing, especially in query processing over spatial and graph/network data.

Von der hinteren Coverseite


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 4,00 für den Versand von Italien nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Cohesive Subgraph Search Over Large Heterogeneous Informatio...

Beispielbild für diese ISBN

Fang, Yixiang
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Bestandsnummer des Verkäufers UXFCDTZHT3

Verkäufer kontaktieren

Neu kaufen

EUR 42,22
Währung umrechnen
Versand: EUR 4,00
Von Italien nach USA
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Yixiang Fang
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Paperback Erstausgabe

Anbieter: Grand Eagle Retail, Mason, OH, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: new. Paperback. This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783030975678

Verkäufer kontaktieren

Neu kaufen

EUR 48,58
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: Brook Bookstore, Milano, MI, Italien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Bestandsnummer des Verkäufers UXFCDTZHT3

Verkäufer kontaktieren

Neu kaufen

EUR 42,25
Währung umrechnen
Versand: EUR 8,00
Von Italien nach USA
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020034267

Verkäufer kontaktieren

Neu kaufen

EUR 47,07
Währung umrechnen
Versand: EUR 3,38
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Kai Wang
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu PAP

Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers S0-9783030975678

Verkäufer kontaktieren

Neu kaufen

EUR 50,03
Währung umrechnen
Versand: EUR 3,77
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783030975678

Verkäufer kontaktieren

Neu kaufen

EUR 58,41
Währung umrechnen
Versand: Gratis
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang
Verlag: Springer 2022-05, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783030975678

Verkäufer kontaktieren

Neu kaufen

EUR 49,57
Währung umrechnen
Versand: EUR 17,73
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783030975678_new

Verkäufer kontaktieren

Neu kaufen

EUR 53,79
Währung umrechnen
Versand: EUR 13,71
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Fang, Yixiang; Wang, Kai; Lin, Xuemin; Zhang, Wenjie
Verlag: Springer, 2022
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26394735076

Verkäufer kontaktieren

Neu kaufen

EUR 66,02
Währung umrechnen
Versand: EUR 3,38
Innerhalb der USA
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Yixiang Fang
ISBN 10: 3030975673 ISBN 13: 9783030975678
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This SpringerBrief provides the first systematic review of the existing works of cohesive subgraph search (CSS) over large heterogeneous information networks (HINs). It also covers the research breakthroughs of this area, including models, algorithms and comparison studies in recent years. This SpringerBrief offers a list of promising future research directions of performing CSS over large HINs.The authors first classify the existing works of CSS over HINs according to the classic cohesiveness metrics such as core, truss, clique, connectivity, density, etc., and then extensively review the specific models and their corresponding search solutions in each group. Note that since the bipartite network is a special case of HINs, all the models developed for general HINs can be directly applied to bipartite networks, but the models customized for bipartite networks may not be easily extended for other general HINs due to their restricted settings. The authors also analyze and compare these cohesive subgraph models (CSMs) and solutions systematically. Specifically, the authors compare different groups of CSMs and analyze both their similarities and differences, from multiple perspectives such as cohesiveness constraints, shared properties, and computational efficiency. Then, for the CSMs in each group, the authors further analyze and compare their model properties and high-level algorithm ideas.This SpringerBrief targets researchers, professors, engineers and graduate students, who are working in the areas of graph data management and graph mining. Undergraduate students who are majoring in computer science, databases, data and knowledge engineering, and data science will also want to read this SpringerBrief. 96 pp. Englisch. Bestandsnummer des Verkäufers 9783030975678

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: EUR 23,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Es gibt 7 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen