This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge–Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples.
The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background.
Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge–Dirac operators.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Cédric Arhancet is a French mathematician working in the preparatory cycle for engineering schools at Lycée Lapérouse (France). He works in several areas of functional analysis including noncommutative Lp-spaces, Fourier multipliers, semigroups of operators and noncommutative geometry. More recently, he has connected his research to Quantum Information Theory.
Christoph Kriegler is a German-French mathematician working at Universit Clermont Auvergne, France. His research interests lie in harmonic and functional analysis. In particular, he works on functional calculus for sectorial operators, and spectral multipliers in connection with geometry of Banach spaces on the one hand, and on the other hand on noncommutative Lp espaces and operator spaces.
This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples.
The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background.
Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge-Dirac operators.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,28 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 2,28 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44460047
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44460047-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. 1st ed. 2022. This book on recent research in noncommutative harmonic analysis treats the Lp boundedness of Riesz transforms associated with Markovian semigroups of either Fourier multipliers on non-abelian groups or Schur multipliers. The detailed study of these objects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lp operations are then shown to yield new examples of quantum compact metric spaces and spectral triples. The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works of Lust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lp operations can be formulated on Lp spaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background. Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lp spaces and analysts interested in the construction of Riesz transforms and Hodge-Dirac operators. Bestandsnummer des Verkäufers LU-9783030990107
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783030990107_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783030990107
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44460047-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book on recent research in noncommutative harmonic analysis treats the Lpboundedness of Riesz transforms associated with Markovian semigroups of either Fouriermultipliers on non-abelian groups or Schur multipliers. The detailed study of theseobjects is then continued with a proof of the boundedness of the holomorphic functional calculus for Hodge-Dirac operators, thereby answering a question of Junge, Mei and Parcet, and presenting a new functional analytic approach which makes it possible to further explore the connection with noncommutative geometry. These Lpoperations are then shown to yield new examples of quantum compact metric spacesand spectral triples.The theory described in this book has at its foundation one of the great discoveries in analysis of the twentieth century: the continuity of the Hilbert and Riesz transforms on Lp. In the works ofLust-Piquard (1998) and Junge, Mei and Parcet (2018), it became apparent that these Lpoperations can beformulated on Lpspaces associated with groups. Continuing these lines of research, the book provides a self-contained introduction to the requisite noncommutative background.Covering an active and exciting topic which has numerous connections with recent developments in noncommutative harmonic analysis, the book will be of interest both to experts in no-commutative Lpspaces and analysts interested in the construction of Riesz transforms and Hodge-Diracoperators. 292 pp. Englisch. Bestandsnummer des Verkäufers 9783030990107
Anzahl: 2 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44460047
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26394683873
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 401726014
Anzahl: 1 verfügbar