Verwandte Artikel zu Introduction to Semi-Supervised Learning (Synthesis...

Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning) - Softcover

 
9783031004209: Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Inhaltsangabe

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Xiaojin Zhu is an assistant professor in the Computer Sciences department at the University of Wisconsin-Madison. His research interests include statistical machine learning and its applications in cognitive psychology, natural language processing, and programming languages. Xiaojin received his Ph.D. from the Language Technologies Institute at Carnegie Mellon University in 2005. He worked on Mandarin speech recognition as a research staff member at IBM China Research Laboratory in 1996-1998. He received M.S. and B.S. in computer science from Shanghai Jiao Tong University in 1996 and 1993, respectively. His other interests include astronomy and geology. Andrew B.Goldberg is a Ph.D. candidate in the Computer Sciences department at the University of Wisconsin-Madison. His research interests lie in statistical machine learning (in particular, semi-supervised learning) and natural language processing. He has served on the program committee for national and international conferences including AAAI, ACL, EMNLP, and NAACL-HLT. Andrew was the recipient of a UW-Madison First-Year Graduate School Fellowship for 2005-2006 and a Yahoo! Key Technical Challenges Grant for 2008-2009. Before his graduate studies, Andrew received a B.A. in computer science from Amherst College, where he graduated magna cum laude with departmental distinction in 2003. He then spent two years writing, editing, and developing teaching materials for introductory computer science and Web programming textbooks at Deitel and Associates. During this time, he contributed to several Deitel books and co-authored the 3rd edition of Internet & World Wide Web How to Program. In 2005, Andrew entered graduate school at UW-Madison and, in 2006 received his M.S. in computer science. In his free time, Andrew enjoys live music, cooking, photography, and travel.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2009
  • ISBN 10 3031004205
  • ISBN 13 9783031004209
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten132
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781598295474: Introduction to Semi-Supervised Learning (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Vorgestellte Ausgabe

ISBN 10:  1598295470 ISBN 13:  9781598295474
Verlag: Morgan and Claypool Publishers, 2009
Softcover

Suchergebnisse für Introduction to Semi-Supervised Learning (Synthesis...

Foto des Verkäufers

Zhu, Xiaojin|Goldberg, Andrew. B
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradi. Bestandsnummer des Verkäufers 608128849

Verkäufer kontaktieren

Neu kaufen

EUR 33,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Andrew. B Goldberg
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines/ Human Semi-Supervised Learning / Theory and Outlook. Bestandsnummer des Verkäufers 9783031004209

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Andrew. B Goldberg
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mining because it can use readily available unlabeled data to improve supervised learning tasks when the labeled data are scarce or expensive. Semi-supervised learning also shows potential as a quantitative tool to understand human category learning, where most of the input is self-evidently unlabeled. In this introductory book, we present some popular semi-supervised learning models, including self-training, mixture models, co-training and multiview learning, graph-based methods, and semi-supervised support vector machines. For each model, we discuss its basic mathematical formulation. The success of semi-supervised learning depends critically on some underlying assumptions. We emphasize the assumptions made by each model and give counterexamples when appropriate to demonstrate the limitations of the different models. In addition, we discuss semi-supervised learning for cognitive psychology. Finally, we give a computational learning theoretic perspective on semi-supervised learning, and we conclude the book with a brief discussion of open questions in the field. Table of Contents: Introduction to Statistical Machine Learning / Overview of Semi-Supervised Learning / Mixture Models and EM / Co-Training / Graph-Based Semi-Supervised Learning / Semi-Supervised Support Vector Machines / Human Semi-Supervised Learning / Theory and Outlook 132 pp. Englisch. Bestandsnummer des Verkäufers 9783031004209

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

ZHU, XIAOJIN
Verlag: Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover

Anbieter: Speedyhen, London, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: NEW. Bestandsnummer des Verkäufers NW9783031004209

Verkäufer kontaktieren

Neu kaufen

EUR 38,45
Währung umrechnen
Versand: EUR 5,94
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhu, Xiaojin; Goldberg, Andrew. B
Verlag: Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In English. Bestandsnummer des Verkäufers ria9783031004209_new

Verkäufer kontaktieren

Neu kaufen

EUR 40,61
Währung umrechnen
Versand: EUR 5,93
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhu, Xiaojin
Verlag: Springer 6/8/2009, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Introduction to Semi-Supervised Learning 0.53. Book. Bestandsnummer des Verkäufers BBS-9783031004209

Verkäufer kontaktieren

Neu kaufen

EUR 40,48
Währung umrechnen
Versand: EUR 11,00
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhu, Xiaojin; Goldberg, Andrew. B
Verlag: Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18395061444

Verkäufer kontaktieren

Neu kaufen

EUR 52,33
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhu, Xiaojin; Goldberg, Andrew. B
Verlag: Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26395061454

Verkäufer kontaktieren

Neu kaufen

EUR 50,45
Währung umrechnen
Versand: EUR 7,92
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Zhu, Xiaojin; Goldberg, Andrew. B
Verlag: Springer, 2009
ISBN 10: 3031004205 ISBN 13: 9783031004209
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 402364177

Verkäufer kontaktieren

Neu kaufen

EUR 50,63
Währung umrechnen
Versand: EUR 10,53
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb