Verwandte Artikel zu Multi-Objective Decision Making (Synthesis Lectures...

Multi-Objective Decision Making (Synthesis Lectures on Artificial Intelligence and Machine Learning) - Softcover

 
9783031004483: Multi-Objective Decision Making (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Inhaltsangabe

Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs).

First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the availableinformation about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems.

Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting.

Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Diederik M. Roijers completed his master's in Computing Science at Utrecht University before obtaining his Ph.D. in Artificial Intelligence under the supervision of Shimon Whiteson and Frans A. Oliehoek at the University of Amsterdam in 2016. He then joined the University of Oxford as a postdoctoral research assistant. He was awarded a Postdoctoral Fellowship Grant from the FWO (Research Foundation - Flanders) and started as an FWO Postdoctoral Fellow at the Vrije Universiteit Brussel in October 2016. His research focuses on creating intelligent autonomous systems that assist humans in solving complex problems, especially those with multiple objectives. To this end, he focuses ondecision-theoretic planning and learning, which enable agents to use mathematical models to reason about the environments in which they operate. In the multi-objective problems he has been studying, the agents produce a set of possibly optimal policies that offer different trade-offs with respect to the objectives, to help users make an informed decision.Shimon Whiteson studied English and Computer Science at Rice University before completing his doctorate in Computer Science under the supervision of Peter Stone at the University of Texas at Austin in 2007. He then spent eight years as an Assistant and then an Associate Professor at the University of Amsterdam before joining the University of Oxford as an Associate Professor in 2015. He was awarded an ERC Starting Grant from the European Research Council in 2014. His research focuses on artificial intelligence with the goal of designing, analyzing, and evaluating the algorithms that enable computational systems to acquire and execute intelligent behavior. He is particularly interested in machine learning, with which computers can learn from experience, and decision-theoretic planning, with which they can reason about their goals and deduce behavioral strategies that maximize their utility. In addition to theoretical work on these topics, he has in recent years also focused on applying them to practical problems in robotics and search engine optimization.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2017
  • ISBN 10 3031004485
  • ISBN 13 9783031004483
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten132
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,55 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781627059602: Multi-Objective Decision Making (Synthesis Lectures on Artificial Intelligence and Machine Learning)

Vorgestellte Ausgabe

ISBN 10:  1627059601 ISBN 13:  9781627059602
Verlag: Morgan & Claypool Publishers, 2017
Softcover

Suchergebnisse für Multi-Objective Decision Making (Synthesis Lectures...

Foto des Verkäufers

Roijers, Diederik M.|Whiteson, Shimon
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can ofte. Bestandsnummer des Verkäufers 608128874

Verkäufer kontaktieren

Neu kaufen

EUR 32,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Shimon Whiteson
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs).First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the availableinformation about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems.Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting.Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 132 pp. Englisch. Bestandsnummer des Verkäufers 9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Shimon Whiteson
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs).First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the availableinformation about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems.Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting.Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions. Bestandsnummer des Verkäufers 9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Shimon Whiteson
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs).First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems.Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting.Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions. 132 pp. Englisch. Bestandsnummer des Verkäufers 9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 35,30
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Roijers, Diederik M.; Whiteson, Shimon
Verlag: Springer, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031004483_new

Verkäufer kontaktieren

Neu kaufen

EUR 40,53
Währung umrechnen
Versand: EUR 5,91
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Roijers, Diederik M.
Verlag: Springer 4/20/2017, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Paperback or Softback

Anbieter: BargainBookStores, Grand Rapids, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback or Softback. Zustand: New. Multi-Objective Decision Making 0.53. Book. Bestandsnummer des Verkäufers BBS-9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 40,40
Währung umrechnen
Versand: EUR 10,97
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Roijers, Diederik M.
Verlag: Springer 2017-04, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 36,31
Währung umrechnen
Versand: EUR 15,42
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Roijers, Diederik M.; Whiteson, Shimon
Verlag: Springer, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783031004483

Verkäufer kontaktieren

Neu kaufen

EUR 43,40
Währung umrechnen
Versand: EUR 8,78
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhou, Diederik M.; Hamilton, Shimon
Verlag: Springer, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44569076-n

Verkäufer kontaktieren

Neu kaufen

EUR 38,00
Währung umrechnen
Versand: EUR 17,55
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhou, Diederik M.; Hamilton, Shimon
Verlag: Springer, 2017
ISBN 10: 3031004485 ISBN 13: 9783031004483
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44569076-n

Verkäufer kontaktieren

Neu kaufen

EUR 39,35
Währung umrechnen
Versand: EUR 17,81
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 3 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen