Verwandte Artikel zu Covariances in Computer Vision and Machine Learning...

Covariances in Computer Vision and Machine Learning (Synthesis Lectures on Computer Vision) - Softcover

 
9783031006920: Covariances in Computer Vision and Machine Learning (Synthesis Lectures on Computer Vision)

Inhaltsangabe

Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.

In this book, we begin by presenting an overview of the {\it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.

We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {\it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.

Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Ha Quang Minh received the Ph.D. degree in mathematics from Brown University, Providence, RI, USA, in May 2006, under the supervision of Steve Smale. He is currently a Researcher in the Department of Pattern Analysis and Computer Vision (PAVIS) with the Istituto Italiano di Tecnologia (IIT), Genova, Italy. Prior to joining IIT, he held research positions at the University of Chicago, the University of Vienna, Austria, and Humboldt University of Berlin, Germany. He was also a Junior Research Fellow at the Erwin Schrodinger International Institute for Mathematical Physics in Vienna and a Fellow at the Institute for Pure and Applied Mathematics (IPAM) at the University of California, Los Angeles (UCLA). His current research interests include applied and computational functional analysis, applied and computational di erential geometry, machine learning, computer vision, and image and signal processing. His recent research contributions include the infinite-dimensional Log-Hilbert-Schmidt metric and Log-Determinant divergences between positive definite operators, along with their applications in machine learning and computer vision in the setting of kernel methods. He received the Microsoft Best Paper Award at the Conference on Uncertainty in Artificial Intelligence (UAI) in 2013 and the IBM Pat Goldberg Memorial Best Paper Award in Computer Science, Electrical Engineering, and Mathematics in 2013.Vittorio Murino is full professor and head of the Pattern Analysis and Computer Vision (PAVIS) department at the Istituto Italiano di Tecnologia (IIT), Genoa, Italy. He received the Ph.D. in Electronic Engineering and Computer Science in 1993 at the University of Genoa, Italy. Then, he was first at the University of Udine and, since 1998, at the University of Verona, where he was chairman of the Department of Computer Science from 2001 to 2007. His research interests are in computer vision and machine learning, in particular, probabilistic techniques for image and video analysis with applications to video surveillance, biomedical image analysis and bio-informatics. He is currently a member of the editorial board of Computer Vision and Image Understanding, Pattern Analysis and Applications, and Machine Vision & Applications journals. He was also associate editor of Pattern Recognition and of the IEEE Transactions on Systems, Man, and Cybernetics until 2016. Finally, he is a Senior Member of the IEEE since 2002 and IAPR Fellow since 2006.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,18 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Covariances in Computer Vision and Machine Learning...

Foto des Verkäufers

Minh, Hà Quang|Murino, Vittorio
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descr. Bestandsnummer des Verkäufers 608129081

Verkäufer kontaktieren

Neu kaufen

EUR 51,51
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vittorio Murino
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision. Bestandsnummer des Verkäufers 9783031006920

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Vittorio Murino
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 172 pp. Englisch. Bestandsnummer des Verkäufers 9783031006920

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Vittorio Murino
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Covariance matrices play important roles in many areas of mathematics, statistics, and machine learning, as well as their applications. In computer vision and image processing, they give rise to a powerful data representation, namely the covariance descriptor, with numerous practical applications.In this book, we begin by presenting an overview of the {it finite-dimensional covariance matrix} representation approach of images, along with its statistical interpretation. In particular, we discuss the various distances and divergences that arise from the intrinsic geometrical structures of the set of Symmetric Positive Definite (SPD) matrices, namely Riemannian manifold and convex cone structures. Computationally, we focus on kernel methods on covariance matrices, especially using the Log-Euclidean distance.We then show some of the latest developments in the generalization of the finite-dimensional covariance matrix representation to the {it infinite-dimensional covariance operator} representation via positive definite kernels. We present the generalization of the affine-invariant Riemannian metric and the Log-Hilbert-Schmidt metric, which generalizes the Log-Euclidean distance. Computationally, we focus on kernel methods on covariance operators, especially using the Log-Hilbert-Schmidt distance. Specifically, we present a two-layer kernel machine, using the Log-Hilbert-Schmidt distance and its finite-dimensional approximation, which reduces the computational complexity of the exact formulation while largely preserving its capability. Theoretical analysis shows that, mathematically, the approximate Log-Hilbert-Schmidt distance should be preferred over the approximate Log-Hilbert-Schmidt inner product and, computationally, it should be preferred over the approximate affine-invariant Riemannian distance.Numerical experiments on image classification demonstrate significant improvements of the infinite-dimensional formulation over the finite-dimensional counterpart. Given the numerous applications of covariance matrices in many areas of mathematics, statistics, and machine learning, just to name a few, we expect that the infinite-dimensional covariance operator formulation presented here will have many more applications beyond those in computer vision. 172 pp. Englisch. Bestandsnummer des Verkäufers 9783031006920

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Minh, Hà Quang; Murino, Vittorio
Verlag: Springer, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031006920_new

Verkäufer kontaktieren

Neu kaufen

EUR 66,82
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Minh, H� Quang
Verlag: Springer 2017-11, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031006920

Verkäufer kontaktieren

Neu kaufen

EUR 63,17
Währung umrechnen
Versand: EUR 15,04
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Minh, Hà Quang; Murino, Vittorio
Verlag: Springer, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Softcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783031006920

Verkäufer kontaktieren

Neu kaufen

EUR 70,80
Währung umrechnen
Versand: EUR 8,59
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Minh, Hà Quang; Murino, Vittorio
Verlag: Springer, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18395061365

Verkäufer kontaktieren

Neu kaufen

EUR 80,61
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Minh, Ha Quang; Murino, Vittorio
Verlag: Springer, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Gebraucht Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44570995

Verkäufer kontaktieren

Gebraucht kaufen

EUR 66,26
Währung umrechnen
Versand: EUR 17,18
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Minh, Ha Quang; Murino, Vittorio
Verlag: Springer, 2017
ISBN 10: 3031006925 ISBN 13: 9783031006920
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44570995-n

Verkäufer kontaktieren

Neu kaufen

EUR 66,13
Währung umrechnen
Versand: EUR 17,37
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 4 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen