Verwandte Artikel zu Full-Text (Substring) Indexes in External Memory (Synthesis...

Full-Text (Substring) Indexes in External Memory (Synthesis Lectures on Data Management) - Softcover

 
9783031007576: Full-Text (Substring) Indexes in External Memory (Synthesis Lectures on Data Management)

Inhaltsangabe

Nowadays, textual databases are among the most rapidly growing collections of data. Some of these collections contain a new type of data that differs from classical numerical or textual data. These are long sequences of symbols, not divided into well-separated small tokens (words). The most prominent among such collections are databases of biological sequences, which are experiencing today an unprecedented growth rate. Starting in 2008, the "1000 Genomes Project" has been launched with the ultimate goal of collecting sequences of additional 1,500 Human genomes, 500 each of European, African, and East Asian origin. This will produce an extensive catalog of Human genetic variations. The size of just the raw sequences in this catalog would be about 5 terabytes. Querying strings without well-separated tokens poses a different set of challenges, typically addressed by building full-text indexes, which provide effective structures to index all the substrings of the given strings. Since full-text indexes occupy more space than the raw data, it is often necessary to use disk space for their construction. However, until recently, the construction of full-text indexes in secondary storage was considered impractical due to excessive I/O costs. Despite this, algorithms developed in the last decade demonstrated that efficient external construction of full-text indexes is indeed possible. This book is about large-scale construction and usage of full-text indexes. We focus mainly on suffix trees, and show efficient algorithms that can convert suffix trees to other kinds of full-text indexes and vice versa. There are four parts in this book. They are a mix of string searching theory with the reality of external memory constraints. The first part introduces general concepts of full-text indexes and shows the relationships between them. The second part presents the first series of external-memory construction algorithms that can handle the construction of full-text indexes for moderately large strings in the order of few gigabytes. The third part presents algorithms that scale for very large strings. The final part examines queries that can be facilitated by disk-resident full-text indexes. Table of Contents: Structures for Indexing Substrings / External Construction of Suffix Trees / Scaling Up: When the Input Exceeds the Main Memory / Queries for Disk-based Indexes / Conclusions and Open Problems

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Marina Barsky is a Post-Doctoral Fellow in the Department of Computer Science at the University of Illinois at Urbana[1]Champaign, US. She received her PhD in Computer Science from the University of Victoria, British Columbia, Canada in 2010. Her PhD research was dedicated to better construction of full-text indexes using disk. Currently she expands her expertise in database management to the field of data mining. Alex Thomo is an Associate Professor in the Department of Computer Science at the University of Victoria, British Columbia, Canada. He received his PhD in Computer Science from Concordia University of Montreal in 2003. Before joining UVic, he was a software engineer for Ericsson Inc, and Assistant Professor at Suffolk University in Boston. His main research is on theoretical and practical aspects of semistructured and graph databases, with a current focus on social and biological networks, automata-based techniques, and index structures for textual data. Ulrike Stege is an Associate Professor in the Department of Computer Science at the University of Victoria, British Columbia, Canada. She received her PhD in Computer Science from the ETH Zürich – a Science and Technology University in Zürich, Switzerland, in year 2000. Her main research interests are interdisciplinary, including the areas of Parameterized Complexity, Computational Biology, Cognitive Science and Human Problem Solving, and Computer Science Education.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2011
  • ISBN 10 3031007573
  • ISBN 13 9783031007576
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten96
  • Kontakt zum HerstellerNicht verfügbar

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781608457953: Full-Text (Substring) Indexes in External Memory (Synthesis Lectures on Data Management)

Vorgestellte Ausgabe

ISBN 10:  1608457958 ISBN 13:  9781608457953
Verlag: Morgan & Claypool Publishers, 2011
Softcover

Suchergebnisse für Full-Text (Substring) Indexes in External Memory (Synthesis...

Foto des Verkäufers

Marina Barsky|Alex Thomo|Ulrike Stege
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Marina Barsky is a Post-Doctoral Fellow in the Department of Computer Science at the University of Illinois at Urbana[1]Champaign, US. She received her PhD in Computer Science from the University of Victoria, British Columbia, Canada in 2010. Her PhD resear. Bestandsnummer des Verkäufers 608129143

Verkäufer kontaktieren

Neu kaufen

EUR 28,42
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Marina Barsky
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Nowadays, textual databases are among the most rapidly growing collections of data. Some of these collections contain a new type of data that differs from classical numerical or textual data. These are long sequences of symbols, not divided into well-separated small tokens (words). The most prominent among such collections are databases of biological sequences, which are experiencing today an unprecedented growth rate. Starting in 2008, the '1000 Genomes Project' has been launched with the ultimate goal of collecting sequences of additional 1,500 Human genomes, 500 each of European, African, and East Asian origin. This will produce an extensive catalog of Human genetic variations. The size of just the raw sequences in this catalog would be about 5 terabytes. Querying strings without well-separated tokens poses a different set of challenges, typically addressed by building full-text indexes, which provide effective structures to index all the substrings of the given strings. Since full-text indexes occupy more space than the raw data, it is often necessary to use disk space for their construction. However, until recently, the construction of full-text indexes in secondary storage was considered impractical due to excessive I/O costs. Despite this, algorithms developed in the last decade demonstrated that efficient external construction of full-text indexes is indeed possible. This book is about large-scale construction and usage of full-text indexes. We focus mainly on suffix trees, and show efficient algorithms that can convert suffix trees to other kinds of full-text indexes and vice versa. There are four parts in this book. They are a mix of string searching theory with the reality of external memory constraints. The first part introduces general concepts of full-text indexes and shows the relationships between them. The second part presents the first series of external-memory construction algorithms that can handle the construction of full-text indexes for moderately large strings in the order of few gigabytes. The third part presents algorithms that scale for very large strings. The final part examines queries that can be facilitated by disk-resident full-text indexes. Table of Contents: Structures for Indexing Substrings / External Construction of Suffix Trees / Scaling Up: When the Input Exceeds the Main Memory / Queries for Disk-based Indexes / Conclusions and Open ProblemsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. Bestandsnummer des Verkäufers 9783031007576

Verkäufer kontaktieren

Neu kaufen

EUR 29,95
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Marina Barsky
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Nowadays, textual databases are among the most rapidly growing collections of data. Some of these collections contain a new type of data that differs from classical numerical or textual data. These are long sequences of symbols, not divided into well-separated small tokens (words). The most prominent among such collections are databases of biological sequences, which are experiencing today an unprecedented growth rate. Starting in 2008, the '1000 Genomes Project' has been launched with the ultimate goal of collecting sequences of additional 1,500 Human genomes, 500 each of European, African, and East Asian origin. This will produce an extensive catalog of Human genetic variations. The size of just the raw sequences in this catalog would be about 5 terabytes. Querying strings without well-separated tokens poses a different set of challenges, typically addressed by building full-text indexes, which provide effective structures to index all the substrings of the given strings. Since full-text indexes occupy more space than the raw data, it is often necessary to use disk space for their construction. However, until recently, the construction of full-text indexes in secondary storage was considered impractical due to excessive I/O costs. Despite this, algorithms developed in the last decade demonstrated that efficient external construction of full-text indexes is indeed possible. This book is about large-scale construction and usage of full-text indexes. We focus mainly on suffix trees, and show efficient algorithms that can convert suffix trees to other kinds of full-text indexes and vice versa. There are four parts in this book. They are a mix of string searching theory with the reality of external memory constraints. The first part introduces general concepts of full-text indexes and shows the relationships between them. The second part presents the first series of external-memory construction algorithms that can handle the construction of full-text indexes for moderately large strings in the order of few gigabytes. The third part presents algorithms that scale for very large strings. The final part examines queries that can be facilitated by disk-resident full-text indexes. Table of Contents: Structures for Indexing Substrings / External Construction of Suffix Trees / Scaling Up: When the Input Exceeds the Main Memory / Queries for Disk-based Indexes / Conclusions and Open Problems. Bestandsnummer des Verkäufers 9783031007576

Verkäufer kontaktieren

Neu kaufen

EUR 29,95
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Marina Barsky
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Nowadays, textual databases are among the most rapidly growing collections of data. Some of these collections contain a new type of data that differs from classical numerical or textual data. These are long sequences of symbols, not divided into well-separated small tokens (words). The most prominent among such collections are databases of biological sequences, which are experiencing today an unprecedented growth rate. Starting in 2008, the '1000 Genomes Project' has been launched with the ultimate goal of collecting sequences of additional 1,500 Human genomes, 500 each of European, African, and East Asian origin. This will produce an extensive catalog of Human genetic variations. The size of just the raw sequences in this catalog would be about 5 terabytes. Querying strings without well-separated tokens poses a different set of challenges, typically addressed by building full-text indexes, which provide effective structures to index all the substrings of the given strings. Since full-text indexes occupy more space than the raw data, it is often necessary to use disk space for their construction. However, until recently, the construction of full-text indexes in secondary storage was considered impractical due to excessive I/O costs. Despite this, algorithms developed in the last decade demonstrated that efficient external construction of full-text indexes is indeed possible. This book is about large-scale construction and usage of full-text indexes. We focus mainly on suffix trees, and show efficient algorithms that can convert suffix trees to other kinds of full-text indexes and vice versa. There are four parts in this book. They are a mix of string searching theory with the reality of external memory constraints. The first part introduces general concepts of full-text indexes and shows the relationships between them. The second part presents the first series of external-memory construction algorithms that can handle the construction of full-text indexes for moderately large strings in the order of few gigabytes. The third part presents algorithms that scale for very large strings. The final part examines queries that can be facilitated by disk-resident full-text indexes. Table of Contents: Structures for Indexing Substrings / External Construction of Suffix Trees / Scaling Up: When the Input Exceeds the Main Memory / Queries for Disk-based Indexes / Conclusions and Open Problems 96 pp. Englisch. Bestandsnummer des Verkäufers 9783031007576

Verkäufer kontaktieren

Neu kaufen

EUR 29,95
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Barsky, Marina; Thomo, Alex; Stege, Ulrike
Verlag: Springer, 2011
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031007576_new

Verkäufer kontaktieren

Neu kaufen

EUR 34,54
Währung umrechnen
Versand: EUR 5,81
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Barsky, Marina
Verlag: Springer 2011-12, 2011
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu PF

Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031007576

Verkäufer kontaktieren

Neu kaufen

EUR 31,84
Währung umrechnen
Versand: EUR 15,17
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 10 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Barsky, Marina; Thomo, Alex; Stege, Ulrike
Verlag: Springer, 2011
ISBN 10: 3031007573 ISBN 13: 9783031007576
Neu Softcover

Anbieter: Lucky's Textbooks, Dallas, TX, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020034952

Verkäufer kontaktieren

Neu kaufen

EUR 29,76
Währung umrechnen
Versand: EUR 65,07
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb