What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with "what if" scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous "pageRank" algorithm and the "HITS" algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Deepayan Chakrabarti obtained his Ph.D. from Carnegie Mellon University in 2005. He was a Senior Research Scientist with Yahoo, and now with Facebook Inc. He has published over 35 refereed articles and is the co-inventor of the RMat graph generator (the basis of the graph500 supercomputer benchmark). He is the co-inventor in over 20 patents (issued or pending). He has given tutorials in CIKM and KDD, and his interests include graph mining, computational advertising, and web search. Christos Faloutsos is a Professor at Carnegie Mellon University and an ACM Fellow. He has received the Research Contributions Award in ICDM 2006, the SIGKDD Innovations Award (2010), 18 "best paper" awards (including two "test of time" awards), and four teaching awards. He has published over 200 refereed articles, and has given over 30 tutorials. His research interests include data mining for graphs and streams, fractals, and self-similarity, database performance, and indexing for multimedia and bio-informatics data.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,56 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. What does the Web look like? How can we find patterns, communities, outliers, in a social network? Which are the most central nodes in a network? These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for examp. Bestandsnummer des Verkäufers 608129161
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -What does the Web look like How can we find patterns, communities, outliers, in a social network Which are the most central nodes in a network These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with 'what if' scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous 'pageRank' algorithm and the 'HITS' algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / ConclusionsSpringer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 208 pp. Englisch. Bestandsnummer des Verkäufers 9783031007750
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - What does the Web look like How can we find patterns, communities, outliers, in a social network Which are the most central nodes in a network These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with 'what if' scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous 'pageRank' algorithm and the 'HITS' algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions. Bestandsnummer des Verkäufers 9783031007750
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -What does the Web look like How can we find patterns, communities, outliers, in a social network Which are the most central nodes in a network These are the questions that motivate this work. Networks and graphs appear in many diverse settings, for example in social networks, computer-communication networks (intrusion detection, traffic management), protein-protein interaction networks in biology, document-text bipartite graphs in text retrieval, person-account graphs in financial fraud detection, and others. In this work, first we list several surprising patterns that real graphs tend to follow. Then we give a detailed list of generators that try to mirror these patterns. Generators are important, because they can help with 'what if' scenarios, extrapolations, and anonymization. Then we provide a list of powerful tools for graph analysis, and specifically spectral methods (Singular Value Decomposition (SVD)), tensors, and case studies like the famous 'pageRank' algorithm and the 'HITS' algorithm for ranking web search results. Finally, we conclude with a survey of tools and observations from related fields like sociology, which provide complementary viewpoints. Table of Contents: Introduction / Patterns in Static Graphs / Patterns in Evolving Graphs / Patterns in Weighted Graphs / Discussion: The Structure of Specific Graphs / Discussion: Power Laws and Deviations / Summary of Patterns / Graph Generators / Preferential Attachment and Variants / Incorporating Geographical Information / The RMat / Graph Generation by Kronecker Multiplication / Summary and Practitioner's Guide / SVD, Random Walks, and Tensors / Tensors / Community Detection / Influence/Virus Propagation and Immunization / Case Studies / Social Networks / Other Related Work / Conclusions 208 pp. Englisch. Bestandsnummer des Verkäufers 9783031007750
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Bestandsnummer des Verkäufers ria9783031007750_new
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. Graph Mining: Laws, Tools, and Case Studies 0.81. Book. Bestandsnummer des Verkäufers BBS-9783031007750
Anzahl: 5 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031007750
Anzahl: 10 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44545657-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44545657-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44545657
Anzahl: Mehr als 20 verfügbar