Verwandte Artikel zu Exploratory Causal Analysis with Time Series Data (Synthesis...

Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery) - Softcover

 
9783031007811: Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Inhaltsangabe

Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

James McCracken received his B.S. in Physics and B.S. in Astrophysics from the Florida Institute of Technology in 2004, his M.S. from the University of Central Florida in 2006, and his Ph.D. in Physics from George Mason University in 2015. He currently lives and works in the Washington, D.C., metro area.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 16,94 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9781627059787: Exploratory Causal Analysis with Time Series Data (Synthesis Lectures on Data Mining and Knowledge Discovery)

Vorgestellte Ausgabe

ISBN 10:  1627059784 ISBN 13:  9781627059787
Verlag: Morgan & Claypool Publishers, 2016
Softcover

Suchergebnisse für Exploratory Causal Analysis with Time Series Data (Synthesis...

Foto des Verkäufers

James M. McCracken
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. James McCracken received his B.S. in Physics and B.S. in Astrophysics from the Florida Institute of Technology in 2004, his M.S. from the University of Central Florida in 2006, and his Ph.D. in Physics from George Mason University in 2015. He currently live. Bestandsnummer des Verkäufers 608129167

Verkäufer kontaktieren

Neu kaufen

EUR 42,96
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

James M. McCracken
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise. Bestandsnummer des Verkäufers 9783031007811

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

James M. McCracken
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 148 pp. Englisch. Bestandsnummer des Verkäufers 9783031007811

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

James M. McCracken
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Many scientific disciplines rely on observational data of systems for which it is difficult (or impossible) to implement controlled experiments. Data analysis techniques are required for identifying causal information and relationships directly from such observational data. This need has led to the development of many different time series causality approaches and tools including transfer entropy, convergent cross-mapping (CCM), and Granger causality statistics. A practicing analyst can explore the literature to find many proposals for identifying drivers and causal connections in time series data sets. Exploratory causal analysis (ECA) provides a framework for exploring potential causal structures in time series data sets and is characterized by a myopic goal to determine which data series from a given set of series might be seen as the primary driver. In this work, ECA is used on several synthetic and empirical data sets, and it is found that all of the tested time series causality tools agree with each other (and intuitive notions of causality) for many simple systems but can provide conflicting causal inferences for more complicated systems. It is proposed that such disagreements between different time series causality tools during ECA might provide deeper insight into the data than could be found otherwise. 148 pp. Englisch. Bestandsnummer des Verkäufers 9783031007811

Verkäufer kontaktieren

Neu kaufen

EUR 48,14
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031007811_new

Verkäufer kontaktieren

Neu kaufen

EUR 53,81
Währung umrechnen
Versand: EUR 5,70
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44571012-n

Verkäufer kontaktieren

Neu kaufen

EUR 48,29
Währung umrechnen
Versand: EUR 16,94
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18395061307

Verkäufer kontaktieren

Neu kaufen

EUR 65,57
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover

Anbieter: Best Price, Torrance, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783031007811

Verkäufer kontaktieren

Neu kaufen

EUR 43,67
Währung umrechnen
Versand: EUR 25,40
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26395061297

Verkäufer kontaktieren

Neu kaufen

EUR 61,78
Währung umrechnen
Versand: EUR 7,63
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

McCracken, James M.
Verlag: Springer, 2016
ISBN 10: 3031007816 ISBN 13: 9783031007811
Neu Softcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 44571012-n

Verkäufer kontaktieren

Neu kaufen

EUR 53,80
Währung umrechnen
Versand: EUR 17,18
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 4 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen