Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Arian Azarang received the BS degree and the first rank award from Shiraz University, Iran, in 2015, and the MS degree in electrical engineering from Tarbiat Modares University, Iran, in 2017. He received his Ph.D. degree in electrical engineering from the University of Texas at Dallas in 2021. He was recognized as the Honorable Mention of the David Daniel Thesis Award for the Erik Jonsson School of Engineering and Computer Science at the University of Texas at Dallas. He is currently working as a Postdoctoral Research Associate at the University of North Carolina at Chapel Hill. His research interests include signal and image processing, applied deep learning, and speech recognition and enhancement. He has thus far authored or co-authored 21 scholarly publications in these areas. He has recently become an Associate Editor of the Springer journal Signal, Image and Video Processing.
Nasser Kehtarnavaz is an Erik Jonsson Distinguished Professor with the Department ofElectrical and Computer Engineering and the Director of the Embedded Machine Learning Laboratory at the University of Texas at Dallas. His research interests include signal and image processing, machine/deep learning, and real-time implementation on embedded processors. He has authored or co-authored 10 books and more than 400 journal papers, conference papers, patents, manuals, and editorials in these areas. He is a Fellow of IEEE, a Fellow of SPIE, and a Licensed Professional Engineer. He is currently serving as Editor-in-Chief of Journal of Real Time Image Processing.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,50 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerGratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Arian Azarang received the BS degree and the first rank award from Shiraz University, Iran, in 2015, and the MS degree in electrical engineering from Tarbiat Modares University, Iran, in 2017. He received his Ph.D. degree in electrical engineering fr. Bestandsnummer des Verkäufers 608129372
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 96 pp. Englisch. Bestandsnummer des Verkäufers 9783031011283
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing. Bestandsnummer des Verkäufers 9783031011283
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Image fusion in remote sensing or pansharpening involves fusing spatial (panchromatic) and spectral (multispectral) images that are captured by different sensors on satellites. This book addresses image fusion approaches for remote sensing applications. Both conventional and deep learning approaches are covered. First, the conventional approaches to image fusion in remote sensing are discussed. These approaches include component substitution, multi-resolution, and model-based algorithms. Then, the recently developed deep learning approaches involving single-objective and multi-objective loss functions are discussed. Experimental results are provided comparing conventional and deep learning approaches in terms of both low-resolution and full-resolution objective metrics that are commonly used in remote sensing. The book is concluded by stating anticipated future trends in pansharpening or image fusion in remote sensing. 96 pp. Englisch. Bestandsnummer des Verkäufers 9783031011283
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In English. Bestandsnummer des Verkäufers ria9783031011283_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031011283
Anzahl: 10 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44598766-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44598766-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44598766
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44598766
Anzahl: Mehr als 20 verfügbar