Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:
Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.
In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:
These SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order ���� with 1 ≤ ���� ≤ 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume.
The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume.
The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet).
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
My research focus is applied mathematics broadly. This includes numerical linear algebra, optimization and solving differential equations. My primary research interest concerns the areas of numerical analysis, scientific computing and high performance computing with particular emphasis on the numerical solution of ordinary differential equations (ODEs) and partial differential equations (PDEs). One focus of my work is programming efficient numerical methods for ODEs and PDEs. I have extensive experience in MATLAB, Maple, Mathematica and R programming of transportable numerical method routines, but I am also experienced in programming in C, C++ and C#, and could readily apply these programming systems to numerical ODE/PDEs. Recently, I have become interested in fractional differential equations (FDEs), especially the numerical solution of fractional initial value problems (FIVPs) and space fractional differential equations (SFPDEs).William E. Schiesser is Emeritus McCann Professor of Computational Biomedical Engineering and Chemical and Biomolecular Engineering, and Professor of Mathematics at Lehigh University. His research is directed toward numerical methods and associated software for ordinary, differential-algebraic and partial differential equations (ODE/DAE/PDEs). He is the author, coauthor or coeditor of 18 books, and his ODE/DAE/PDE computer routines have been accessed by some 5,000 colleges and universities, corporations and government agencies.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typi. Bestandsnummer des Verkäufers 608129501
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 208 pp. Englisch. Bestandsnummer des Verkäufers 9783031012846
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:Vol 1: Introduction to Algorithms and Computer Coding in RVol 2: Applications from Classical Integer PDEs.Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditionsFisher-Kolmogorov SFPDEBurgers SFPDEFokker-Planck SFPDEBurgers-Huxley SFPDEFitzhugh-Nagumo SFPDEThese SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order with 1 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume.The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume.The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet). Bestandsnummer des Verkäufers 9783031012846
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Partial differential equations (PDEs) are one of the most used widely forms of mathematics in science and engineering. PDEs can have partial derivatives with respect to (1) an initial value variable, typically time, and (2) boundary value variables, typically spatial variables. Therefore, two fractional PDEs can be considered, (1) fractional in time (TFPDEs), and (2) fractional in space (SFPDEs). The two volumes are directed to the development and use of SFPDEs, with the discussion divided as:Vol 1: Introduction to Algorithms and Computer Coding in RVol 2: Applications from Classical Integer PDEs.Various definitions of space fractional derivatives have been proposed. We focus on the Caputo derivative, with occasional reference to the Riemann-Liouville derivative.In the second volume, the emphasis is on applications of SFPDEs developed mainly through the extension of classical integer PDEs to SFPDEs. The example applications are:Fractional diffusion equation with Dirichlet, Neumann and Robin boundary conditionsFisher-Kolmogorov SFPDEBurgers SFPDEFokker-Planck SFPDEBurgers-Huxley SFPDEFitzhugh-Nagumo SFPDEThese SFPDEs were selected because they are integer first order in time and integer second order in space. The variation in the spatial derivative from order two (parabolic) to order one (first order hyperbolic) demonstrates the effect of the spatial fractional order with 1 2. All of the example SFPDEs are one dimensional in Cartesian coordinates. Extensions to higher dimensions and other coordinate systems, in principle, follow from the examples in this second volume.The examples start with a statement of the integer PDEs that are then extended to SFPDEs. The format of each chapter is the same as in the first volume.The R routines can be downloaded and executed on a modest computer (R is readily available from the Internet). 208 pp. Englisch. Bestandsnummer des Verkäufers 9783031012846
Anzahl: 2 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18394683526
Anzahl: 4 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26394683532
Anzahl: 4 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 401726291
Anzahl: 4 verfügbar