Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.
Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.
This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.
This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Charlotte y Peter Fiell son dos autoridades en historia, teoría y crítica del diseño y han escrito más de sesenta libros sobre la materia, muchos de los cuales se han convertido en éxitos de ventas. También han impartido conferencias y cursos como profesores invitados, han comisariado exposiciones y asesorado a fabricantes, museos, salas de subastas y grandes coleccionistas privados de todo el mundo. Los Fiell han escrito numerosos libros para TASCHEN, entre los que se incluyen 1000 Chairs, Diseño del siglo XX, El diseño industrial de la A a la Z, Scandinavian Design y Diseño del siglo XXI.
Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.
Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.
This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.
This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,38 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 13,71 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerAnbieter: Books From California, Simi Valley, CA, USA
hardcover. Zustand: Very Good. Cover and edges may have some wear. Bestandsnummer des Verkäufers mon0003813126
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783031042928_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Hardback. Zustand: New. 2022 ed. Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds. Bestandsnummer des Verkäufers LU-9783031042928
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020035381
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783031042928
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Hardback. Zustand: New. 2022 ed. Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold. Manifold optimization methods mainly focus on adapting existing optimization methods from the usual "easy-to-deal-with" Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds. Bestandsnummer des Verkäufers LU-9783031042928
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Manifold optimization is an emerging field of contemporary optimization thatconstructs efficient and robust algorithms by exploiting the specific geometricalstructure of the search space. In our case the search space takes the form of amanifold.Manifold optimization methods mainly focus on adapting existing optimizationmethods from the usual 'easy-to-deal-with' Euclidean search spaces to manifoldswhose local geometry can be defined e.g. by a Riemannian structure. In this waythe form of the adapted algorithms can stay unchanged. However, to accommodatethe adaptation process, assumptions on the search space manifold often have tobe made. In addition, the computations and estimations are confined by the localgeometry.This book presents a framework for population-based optimization on Riemannianmanifolds that overcomes both the constraints of locality and additional assumptions.Multi-modal, black-box manifold optimization problems on Riemannian manifoldscan be tackled using zero-order stochastic optimization methods from a geometricalperspective, utilizing both the statistical geometry of the decision spaceand Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empiricalaspects ofstochastic population-based optimization on abstract Riemannianmanifolds. 180 pp. Englisch. Bestandsnummer des Verkäufers 9783031042928
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents recent research on Population-based Optimization on Riemannian manifolds Addresses the locality and implicit assumptions of manifold optimization Presents a novel population-based optimization algorithm on Riemannian manifolds . Bestandsnummer des Verkäufers 575523153
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -Manifold optimization is an emerging field of contemporary optimization that constructs efficient and robust algorithms by exploiting the specific geometrical structure of the search space. In our case the search space takes the form of a manifold.Manifold optimization methods mainly focus on adapting existing optimization methods from the usual ¿easy-to-deal-with¿ Euclidean search spaces to manifolds whose local geometry can be defined e.g. by a Riemannian structure. In this way the form of the adapted algorithms can stay unchanged. However, to accommodate the adaptation process, assumptions on the search space manifold often have to be made. In addition, the computations and estimations are confined by the local geometry.This book presents a framework for population-based optimization on Riemannian manifolds that overcomes both the constraints of locality and additional assumptions. Multi-modal, black-box manifold optimization problems on Riemannian manifolds can be tackled using zero-order stochastic optimization methods from a geometrical perspective, utilizing both the statistical geometry of the decision space and Riemannian geometry of the search space.This monograph presents in a self-contained manner both theoretical and empirical aspects of stochastic population-based optimization on abstract Riemannian manifolds.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. Bestandsnummer des Verkäufers 9783031042928
Anzahl: 2 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 38794602/1
Anzahl: 2 verfügbar