Verwandte Artikel zu Algorithmic Learning in a Random World

Algorithmic Learning in a Random World - Hardcover

 
9783031066481: Algorithmic Learning in a Random World

Inhaltsangabe

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described - conformal predictors - are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.

Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.

Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Vladimir Vovk is Professor of Computer Science at Royal Holloway, University of London. His research interests include machine learning and the foundations of probability and statistics. He was one of the founders of prediction with expert advice, an area of machine learning avoiding making any statistical assumptions about the data. Together with Glenn Shafer and with original inspiration from Philip Dawid, he developed game-theoretic foundations for probability and statistics.

Alexander Gammerman is Professor of Computer Science and co-Director of the Centre for Reliable Machine Learning at Royal Holloway, University of London. His research interests lie in machine learning and pattern recognition, where the majority of his research books, papers, and grants can be found. He is a Fellow of the Royal Statistical Society and has held visiting and honorary professorships from several universities in Europe and the USA.

Glenn Shafer is Professor and formerDean of the Rutgers Business School – Newark and New Brunswick. He is best known for his work in the 1970s and 1980s on the Dempster-Shafer theory, an alternative theory of probability that has been applied widely in engineering and artificial intelligence. Glenn is also known for his initiation, with Vladimir Vovk, of the game-theoretic framework for probability. Their first book on the topic was Probability and Finance: It's Only a Game! A new book on the topic, Game-Theoretic Foundations for Probability and Finance, published in 2019 (Wiley).

Von der hinteren Coverseite

This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described — conformal predictors — are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.

Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of "randomness" (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.

Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Wie neu
Unread book in perfect condition...
Diesen Artikel anzeigen

EUR 17,07 für den Versand von USA nach Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783031066511: Algorithmic Learning in a Random World

Vorgestellte Ausgabe

ISBN 10:  3031066510 ISBN 13:  9783031066511
Verlag: Springer, 2023
Softcover

Suchergebnisse für Algorithmic Learning in a Random World

Foto des Verkäufers

Vladimir Vovk|Alexander Gammerman|Glenn Shafer
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Presents conformal prediction, which is a valuable new method for practitioners of machine learning and statisticsCovers probabilistic predictors, which when combined with suitable loss functions facilitate practical decision-makingThe pred. Bestandsnummer des Verkäufers 600119624

Verkäufer kontaktieren

Neu kaufen

EUR 153,73
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vladimir Vovk
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded. Bestandsnummer des Verkäufers 9783031066481

Verkäufer kontaktieren

Neu kaufen

EUR 181,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Vladimir Vovk
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described-conformal predictors-are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random Worldcontains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded. 504 pp. Englisch. Bestandsnummer des Verkäufers 9783031066481

Verkäufer kontaktieren

Neu kaufen

EUR 181,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Vladimir Vovk
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is about conformal prediction, an approach to prediction that originated in machine learning in the late 1990s. The main feature of conformal prediction is the principled treatment of the reliability of predictions. The prediction algorithms described ¿ conformal predictors ¿ are provably valid in the sense that they evaluate the reliability of their own predictions in a way that is neither over-pessimistic nor over-optimistic (the latter being especially dangerous). The approach is still flexible enough to incorporate most of the existing powerful methods of machine learning. The book covers both key conformal predictors and the mathematical analysis of their properties.Algorithmic Learning in a Random World contains, in addition to proofs of validity, results about the efficiency of conformal predictors. The only assumption required for validity is that of 'randomness' (the prediction algorithm is presented with independent and identically distributed examples); in later chapters, even the assumption of randomness is significantly relaxed. Interesting results about efficiency are established both under randomness and under stronger assumptions.Since publication of the First Edition in 2005 conformal prediction has found numerous applications in medicine and industry, and is becoming a popular machine-learning technique. This Second Edition contains three new chapters. One is about conformal predictive distributions, which are more informative than the set predictions produced by standard conformal predictors. Another is about the efficiency of ways of testing the assumption of randomness based on conformal prediction. The third new chapter harnesses conformal testing procedures for protecting machine-learning algorithms against changes in the distribution of the data. In addition, the existing chapters have been revised, updated, and expanded.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 504 pp. Englisch. Bestandsnummer des Verkäufers 9783031066481

Verkäufer kontaktieren

Neu kaufen

EUR 181,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031066481_new

Verkäufer kontaktieren

Neu kaufen

EUR 177,82
Währung umrechnen
Versand: EUR 5,75
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 45448503-n

Verkäufer kontaktieren

Neu kaufen

EUR 177,80
Währung umrechnen
Versand: EUR 17,31
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers 45448503-n

Verkäufer kontaktieren

Neu kaufen

EUR 195,16
Währung umrechnen
Versand: EUR 17,07
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Gebraucht Hardcover

Anbieter: GreatBookPrices, Columbia, MD, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45448503

Verkäufer kontaktieren

Gebraucht kaufen

EUR 196,80
Währung umrechnen
Versand: EUR 17,07
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Gebraucht Hardcover

Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 45448503

Verkäufer kontaktieren

Gebraucht kaufen

EUR 197,29
Währung umrechnen
Versand: EUR 17,31
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Vovk, Vladimir; Gammerman, Alexander; Shafer, Glenn
Verlag: Springer, 2022
ISBN 10: 3031066480 ISBN 13: 9783031066481
Neu Hardcover

Anbieter: California Books, Miami, FL, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Bestandsnummer des Verkäufers I-9783031066481

Verkäufer kontaktieren

Neu kaufen

EUR 208,48
Währung umrechnen
Versand: EUR 8,54
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Es gibt 1 weitere Exemplare dieses Buches

Alle Suchergebnisse ansehen