Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Vladik Kreinovich is Professor of Computer Science at the University of Texas at El Paso. His main interests computations and intelligent control. He has published 13 books, 39 edited books, and more than 1,800 papers.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44822081
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 44822081-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Hardback. Zustand: New. 2022 ed. Bestandsnummer des Verkäufers LU-9783031099731
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783031099731_new
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 44822081-n
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 44822081
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020036121
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Hardcover. Zustand: new. Hardcover. Modern AI techniques - especially deep learning - provide, in many cases, very good recommendations: where a self-driving car should go, whether to give a company a loan, etc. The problem is that not all these recommendations are good -- and since deep learning provides no explanations, we cannot tell which recommendations are good. It is therefore desirable to provide natural-language explanation of the numerical AI recommendations. The need to connect natural language rules and numerical decisions is known since 1960s, when the need emerged to incorporate expert knowledge -- described by imprecise words like "small" -- into control and decision making. For this incorporation, a special "fuzzy" technique was invented, that led to many successful applications. This book described how this technique can help to make AI more explainable.The book can be recommended for students, researchers, and practitioners interested in explainable AI. Modern AI techniques - especially deep learning - provide, in many cases, very good recommendations: where a self-driving car should go, whether to give a company a loan, etc. The problem is that not all these recommendations are good -- and since deep learning provides no explanations, we cannot tell which recommendations are good. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783031099731
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 130 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26396292908
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Modern AI techniques -- especially deep learning -- provide, inmany cases, very good recommendations: where a self-driving carshould go, whether to give a company a loan, etc. The problem isthat not all these recommendations are good -- and since deeplearning provides no explanations, we cannot tell whichrecommendations are good.It is therefore desirable to provide natural-language explanationof the numerical AI recommendations. The need to connect naturallanguage rules and numerical decisions is known since 1960s, whenthe need emerged to incorporate expert knowledge -- described byimprecise words like 'small' -- into control and decision making.For this incorporation, a special 'fuzzy' technique was invented,that led to many successful applications. This book described howthis technique can help to make AI more explainable.The book can be recommended for students, researchers, andpractitioners interested in explainable AI. 140 pp. Englisch. Bestandsnummer des Verkäufers 9783031099731
Anzahl: 2 verfügbar