Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.
This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field.
Topics and features:
Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model construction
Offers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other results
Provides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic arguments
Includes a large number of exercises of varying levels of difficulty, supplementing each chapter
The text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas.
Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut. He obtained his PhD from the University of Chicago, and has held postdoctoral positions at the University of Notre Dame and the University of California, Berkeley. He has held visiting positions at the National University of Singapore and Charles University, Prague. His research focuses on the computability theoretic and reverse mathematical aspects of of combinatorics, and on the interactions of reverse mathematics with computable analysis and other areas.
Carl Mummert is a Professor of Computer and Information Technology at Marshall Univeristy. He obtained his Ph.D. from Pennsylvania State University and held postdoctoral positions at Appalachian State University and the University of Michigan. His research has included the reverse mathematics of topology and combinatorics as well as higher order reverse mathematics.
Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.
This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field.
Topics and features:
Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model construction
Offers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other results
Provides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic arguments
Includes a large number of exercises of varying levels of difficulty, supplementing each chapter
The text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas.
Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 17,11 für den Versand von USA nach Deutschland
Versandziele, Kosten & DauerEUR 5,76 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783031113697_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com UK, London, Vereinigtes Königreich
Paperback. Zustand: New. 2022 ed. Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field. Topics and features:Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model constructionOffers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other resultsProvides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic argumentsIncludes a large number of exercises of varying levels of difficulty, supplementing each chapterThe text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas.Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA. Bestandsnummer des Verkäufers LU-9783031113697
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 46158010-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. 2022 ed. Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of mathematical logic and computability theory, the subject offers beautiful results as well as significant foundational insights.This text provides a modern treatment of reverse mathematics that combines computability theoretic reductions and proofs in formal arithmetic to measure the complexity of theorems and problems from all areas of mathematics. It includes detailed introductions to techniques from computable mathematics, Weihrauch style analysis, and other parts of computability that have become integral to research in the field. Topics and features:Provides a complete introduction to reverse mathematics, including necessary background from computability theory, second order arithmetic, forcing, induction, and model constructionOffers a comprehensive treatment of the reverse mathematics of combinatorics, including Ramsey's theorem, Hindman's theorem, and many other resultsProvides central results and methods from the past two decades, appearing in book form for the first time and including preservation techniques and applications of probabilistic argumentsIncludes a large number of exercises of varying levels of difficulty, supplementing each chapterThe text will be accessible to students with a standard first year course in mathematical logic. It will also be a useful reference for researchers in reverse mathematics, computability theory, proof theory, and related areas.Damir D. Dzhafarov is an Associate Professor of Mathematics at the University of Connecticut, CT, USA. Carl Mummert is a Professor of Computer and Information Technology at Marshall University, WV, USA. Bestandsnummer des Verkäufers LU-9783031113697
Anzahl: Mehr als 20 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-261085
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46158010
Anzahl: Mehr als 20 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. pp. 508. Bestandsnummer des Verkäufers 18398552386
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Reverse mathematics studies the complexity of proving mathematical theorems and solving mathematical problems. Typical questions include: Can we prove this result without first proving that one? Can a computer solve this problem? A highly active part of . Bestandsnummer des Verkäufers 913665721
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 46158010
Anzahl: Mehr als 20 verfügbar
Anbieter: Basi6 International, Irving, TX, USA
Zustand: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Bestandsnummer des Verkäufers ABEJUNE24-261083
Anzahl: 1 verfügbar