This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.
Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Antonio Lepore is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II.
His research interests and publications in international journals focus on the use of statistical methods for the analysis and monitoring of functional data aimed at the interpretation of complex data coming from high-frequency multi-sensor data acquisition systems.
He is a member of the ENBIS (European Network for Business and Industrial Statistics) and SIS (the Italian Statistical Society).
Biagio Palumbo is an Associate Professor of Statistics for Experimental and Technological Research (SECS-S/02) in the Department of Industrial Engineering of the University of Naples Federico II and President Elect of the European Network for Business and Industrial Statistics (ENBIS).
His research interests are in interpretable statistical learning techniques for industrial engineering and, in particular, for the monitoring of complex data coming from high-frequency multi-sensor acquisition systems and for optimization of manufacturing processes.
He is member of the Italian Statistical Society, the American Society for Quality (ASQ), and the Italian Association of Mechanical Technology.
Jean-Michel Poggi is a Professor of Statistics at Université Paris Cité and a member of the Lab. Maths Orsay (LMO) at Université Paris-Saclay, in France.
His research interests are in nonparametric time series, wavelets, tree-based methods (CART, Random Forests, Boosting) and applied statistics. His work combines theoretical and practical contributions with industrial applications (mainly environment and energy) and software development.
He is Associate Editor of three journals: the Journal of Statistical Software (JSS), Advances in Data Analysis and Classification (ADAC) and the Journal of Data Science, Statistics, and Visualisation (JDSSV).
He is President of the European Network for Business and Industrial Statistics (ENBIS).
This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.
Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020036360
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783031124013
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783031124013_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
PF. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783031124013
Anzahl: 10 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26396292548
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume provides readers with a compact, stimulating and multifaceted introduction to interpretability, a key issue for developing insightful statistical and machine learning approaches as well as for communicating modelling results in business and industry.Different views in the context of Industry 4.0 are offered in connection with the concepts of explainability of machine learning tools, generalizability of model outputs and sensitivity analysis. Moreover, the book explores the integration of Artificial Intelligence and robust analysis of variance for big data mining and monitoring in Additive Manufacturing, and sheds new light on interpretability via random forests and flexible generalized additive models together with related software resources and real-world examples. 132 pp. Englisch. Bestandsnummer des Verkäufers 9783031124013
Anzahl: 2 verfügbar
Anbieter: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irland
Zustand: New. Bestandsnummer des Verkäufers V9783031124013
Anzahl: 15 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 401165851
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18396292558
Anzahl: 4 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 130 pages. 9.25x6.10x0.28 inches. In Stock. Bestandsnummer des Verkäufers x-3031124014
Anzahl: 2 verfügbar