Verwandte Artikel zu Procedural Content Generation via Machine Learning:...

Procedural Content Generation via Machine Learning: An Overview (Synthesis Lectures on Games and Computational Intelligence) - Softcover

 
9783031167218: Procedural Content Generation via Machine Learning: An Overview (Synthesis Lectures on Games and Computational Intelligence)

Inhaltsangabe

This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML).  Machine learning is having a major impact on many industries, including the video game industry.  PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content.  The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML.  This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry.  The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis.  This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.




Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Matthew Guzdial, Ph.D, is an Assistant Professor in the Computing Science Department at the University of Alberta and a Canada CIFAR AI Chair at the Alberta Machine Intelligence Institute (Amii). His research focuses on the intersection of machine learning, creativity, and human-centered computing. He is a recipient of an Early Career Researcher Award from NSERC, a Unity Graduate Fellowship, and two best conference paper awards from the International Conference on Computational Creativity. His work has been featured in the BBC, WIRED, Popular Science, and Time.
Sam Snodgrass is an AI researcher at modl.ai, a game AI company focused on bringing state of the art game AI research from academia to the games industry. His research focuses on making PCGML more accessible to non-ML experts. This work includes making PCGML systems more adaptable and self-reliant, reducing the authorial burden of creating training data through domain blending, and building tools that allow for easier interactions with the underlying PCGML systems and their outputs. Through his work at modl.ai he has deployed several mixed-initiative PCGML tools into game studios to assist with level design and creation.

Adam Summerville is the lead AI engineer for Procedural Content Generation at The Molasses Flood, a CD Projekt studio. Prior to this, he was an assistant professor at California State Polytechnic University, Pomona. His research focuses on the intersection of artificial intelligence in games with a high-level goal of enabling experiences that would not be possible without artificial intelligence. This research ranges from procedural generation of levels, social simulation for games, and the use of natural language processing for gameplay. His work has been shown at the SF MoMA and SlamDance and won the audience choice award at IndieCade.


Von der hinteren Coverseite

This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML).  Machine learning is having a major impact on many industries, including the video game industry.  PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content.  The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML.  This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry.  The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis.  This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

Suchergebnisse für Procedural Content Generation via Machine Learning:...

Foto des Verkäufers

Matthew Guzdial|Sam Snodgrass|Adam J. Summerville
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Kartoniert / Broschiert
Print-on-Demand

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Kartoniert / Broschiert. Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Addresses the growing academic interest in PCGML Demonstrates common pitfalls in PCGML projects and how to avoid themProvides resources and guidance for starting new PCGML projectsMatthew Guzdial, Ph.D, is an Assistant Professor in . Bestandsnummer des Verkäufers 1241470853

Verkäufer kontaktieren

Neu kaufen

EUR 55,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project. 238 pp. Englisch. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Matthew Guzdial
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book surveys current and future approaches to generating video game content with machine learning or Procedural Content Generation via Machine Learning (PCGML). Machine learning is having a major impact on many industries, including the video game industry. PCGML addresses the use of computers to generate new types of content for video games (game levels, quests, characters, etc.) by learning from existing content. The authors illustrate how PCGML is poised to transform the video games industry and provide the first ever beginner-focused guide to PCGML. This book features an accessible introduction to machine learning topics, and readers will gain a broad understanding of currently employed PCGML approaches in academia and industry. The authors provide guidance on how best to set up a PCGML project and identify open problems appropriate for a research project or thesis. This book is written with machine learning and games novices in mind and includes discussions of practical and ethical considerations along with resources and guidance for starting a new PCGML project.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 252 pp. Englisch. Bestandsnummer des Verkäufers 9783031167218

Verkäufer kontaktieren

Neu kaufen

EUR 64,19
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Bestandsnummer des Verkäufers ria9783031167218_new

Verkäufer kontaktieren

Neu kaufen

EUR 73,05
Währung umrechnen
Versand: EUR 5,77
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Bestandsnummer des Verkäufers 26398710149

Verkäufer kontaktieren

Neu kaufen

EUR 85,83
Währung umrechnen
Versand: EUR 7,67
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18398710159

Verkäufer kontaktieren

Neu kaufen

EUR 93,37
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew; Snodgrass, Sam; Summerville, Adam J.
Verlag: Springer, 2023
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Softcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 397699674

Verkäufer kontaktieren

Neu kaufen

EUR 88,98
Währung umrechnen
Versand: EUR 10,25
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Guzdial, Matthew/ Snodgrass, Sam/ Summerville, Adam J.
ISBN 10: 303116721X ISBN 13: 9783031167218
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 251 pages. 9.45x6.61x0.57 inches. In Stock. Bestandsnummer des Verkäufers x-303116721X

Verkäufer kontaktieren

Neu kaufen

EUR 91,26
Währung umrechnen
Versand: EUR 11,58
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb