Verwandte Artikel zu Deep Learning and Computational Physics

Deep Learning and Computational Physics - Softcover

 
9783031593475: Deep Learning and Computational Physics

Inhaltsangabe

The main objective of this book is to introduce a student who is familiar with elementary math concepts to select topics in deep learning. It exploits strong connections between deep learning algorithms and the techniques of computational physics to achieve two important goals. First, it uses concepts from computational physics to develop an understanding of deep learning algorithms. Second, it describes several novel deep learning algorithms for solving challenging problems in computational physics, thereby offering someone who is interested in modeling physical phenomena with a complementary set of tools. It is intended for senior undergraduate and graduate students in science and engineering programs. It is used as a textbook for a course (or a course sequence) for senior-level undergraduate or graduate-level students. 

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Assad Oberai is the Hughes Professor of Aerospace and Mechanical Engineering in the Viterbi School of Engineering. He earned a Bachelor of Engineering degree from Osmania University, an MS from the University of Colorado, and a PhD from Stanford University all in Mechanical Engineering.  He has held academic appointments at Boston University, Rensselaer Polytechnic Institute, and the University of Southern California.  Assad leads a group that designs, implements, and applies data- and physics-based models and algorithms to solve problems in engineering and science. Problems such as better detection, diagnosis, and care of diseases like cancer, understanding the role of mechanics and physics in medicine and biology, modeling the evolution of multi-physics and multiscale systems, and reduced-order models for aerospace and mechanical systems. Assad is a Fellow of the American Academy of Mechanics, American Society of Mechanical Engineers, the American Institute of Medical and Biological Engineering, and the United States Association of Computational Mechanics. 

Deep Ray is an Assistant Professor of Mathematics at the University of Maryland. He earned his Bachelor of Mathematics from University of Delhi, followed by a Masters and PhD in Mathematics from Tata Institute of Fundamental Research - Center for Applicable Mathematics. He has held research positions at ETH Zurich, EPFL, Rice University and University of Southern California. Deep’s research lies at the interface of conventional numerical analysis and machine learning. He focuses on identifying computational bottlenecks in existing numerical algorithms and resolving them by the careful integration of machine learning tools. He has used such techniques to design efficient shock-capturing methods, build deep learning-based surrogate models to solve partial differential equations, develop differentiable models for constrained optimization, and solve Bayesian inference problems arising in real-world applications.

Orazio Pinti is a Research Scientist at Pasteur Labs, working in the field of scientific machine learning and computational physics. He holds a BSc and MSc from the Polytechnic University of Turin, and a PhD from the University of Southern California, all in Aerospace Engineering. His interests include applied mathematics, machine learning, and computational science, with a focus on reduced-order and multi-fidelity modeling.

Von der hinteren Coverseite

The main objective of this book is to introduce a student who is familiar with elementary math concepts to select topics in deep learning. It exploits strong connections between deep learning algorithms and the techniques of computational physics to achieve two important goals. First, it uses concepts from computational physics to develop an understanding of deep learning algorithms. Second, it describes several novel deep learning algorithms for solving challenging problems in computational physics, thereby offering someone who is interested in modeling physical phenomena with a complementary set of tools. It is intended for senior undergraduate and graduate students in science and engineering programs. It is used as a textbook for a course (or a course sequence) for senior-level undergraduate or graduate-level students.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Deep Learning and Computational Physics

Beispielbild für diese ISBN

Deep Ray
Verlag: Springer, Springer, 2025
ISBN 10: 3031593472 ISBN 13: 9783031593475
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering. Bestandsnummer des Verkäufers 9783031593475

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Deep Ray
ISBN 10: 3031593472 ISBN 13: 9783031593475
Neu Taschenbuch
Print-on-Demand

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - Print on Demand Titel. Neuware Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 172 pp. Englisch. Bestandsnummer des Verkäufers 9783031593475

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Deep Ray
ISBN 10: 3031593472 ISBN 13: 9783031593475
Neu Taschenbuch
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 172 pp. Englisch. Bestandsnummer des Verkäufers 9783031593475

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Ray, Deep
Verlag: Springer, 2025
ISBN 10: 3031593472 ISBN 13: 9783031593475
Neu Softcover
Print-on-Demand

Anbieter: Brook Bookstore On Demand, Napoli, NA, Italien

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: new. Questo è un articolo print on demand. Bestandsnummer des Verkäufers 5RBATC6LJV

Verkäufer kontaktieren

Neu kaufen

EUR 62,23
Währung umrechnen
Versand: EUR 40,00
Von Italien nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb