This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.
The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski–Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.
Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Claus Scheiderer is Professor for Geometry at Konstanz University (Germany). Among his main mathematical interests are real algebraic geometry, convex algebraic geometry and linear algebraic groups.
This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.
The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski–Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.
Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 422 pages. 9.25x6.10x9.49 inches. In Stock. Bestandsnummer des Verkäufers __3031692128
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26401592631
Anzahl: 1 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski-Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book. 404 pp. Englisch. Bestandsnummer des Verkäufers 9783031692123
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 395865832
Anzahl: 1 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18401592637
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Bestandsnummer des Verkäufers 1743120410
Anzahl: 2 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Buch. Zustand: Neu. Neuware -This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski¿Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 424 pp. Englisch. Bestandsnummer des Verkäufers 9783031692123
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Buch. Zustand: Neu. A Course in Real Algebraic Geometry | Positivity and Sums of Squares | Claus Scheiderer | Buch | xviii | Englisch | 2024 | Springer | EAN 9783031692123 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 129766599
Anzahl: 5 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook is designed for a one-year graduate course in real algebraic geometry, with a particular focus on positivity and sums of squares of polynomials.The first half of the book features a thorough introduction to ordered fields and real closed fields, including the Tarski-Seidenberg projection theorem and transfer principle. Classical results such as Artin's solution to Hilbert's 17th problem and Hilbert's theorems on sums of squares of polynomials are presented in detail. Other features include careful introductions to the real spectrum and to the geometry of semialgebraic sets. The second part studies Archimedean positivstellensätze in great detail and in various settings, together with important applications. The techniques and results presented here are fundamental to contemporary approaches to polynomial optimization. Important results on sums of squares on projective varieties are covered as well. The last part highlights applications to semidefinite programming and polynomial optimization, including recent research on semidefinite representation of convex sets.Written by a leading expert and based on courses taught for several years, the book assumes familiarity with the basics of commutative algebra and algebraic varieties, as can be covered in a one-semester first course. Over 350 exercises, of all levels of difficulty, are included in the book. Bestandsnummer des Verkäufers 9783031692123
Anzahl: 1 verfügbar