This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin? How to proceed? Which approach is more promising? Are there multiple solutions/proofs? etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics.
The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts.
To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Shlomo Libeskind is a professor emeritus at the University of Oregon mathematics department. He has extensive writing experience (books and articles). In teaching and in writing, Dr. Libeskind uses a heuristic approach to problem solving and proof; in this approach the reasonableness of each step in a solution or proof is emphasized along with a discussion on why one direction might be more promising than another. Dr. Libeskind received his PhD in Mathematics in 1971 at the University of Wisconsin, Madison.
Dr. Isa Jubran has nearly 30 years of experience teaching a wide range of undergraduate mathematics courses at SUNY Cortland. He regularly teaches a junior-level geometry course and a first-year elementary geometry course, where he emphasizes the proper use of dynamic geometry software. Occasionally, he teaches a sophomore/junior level fractals and chaos course.
This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin? How to proceed? Which approach is more promising? Are there multiple solutions/proofs? etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics.
The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts.
To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Used Book Company, Egg Harbor Township, NJ, USA
Zustand: LikeNew. Shows very minimal signs of wear and previous use. A portion of your purchase benefits nonprofits! - Note: Edition format may differ from what is shown in stock photo item details. May not include supplementary material (toys, access code, dvds, etc). Bestandsnummer des Verkäufers 584ZST000BCY_ns
Anzahl: 1 verfügbar
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783031741524
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 48482901-n
Anzahl: 5 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26403506123
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin How to proceed Which approach is more promising Are there multiple solutions/proofs etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics.The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts.To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses. 676 pp. Englisch. Bestandsnummer des Verkäufers 9783031741524
Anzahl: 2 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783031741524
Anzahl: 5 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand. Bestandsnummer des Verkäufers 410696724
Anzahl: 4 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 48482901
Anzahl: 5 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND. Bestandsnummer des Verkäufers 18403506113
Anzahl: 4 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Hardcover. Zustand: new. Hardcover. This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Emphasis is placed on developing students' deductive reasoning skills as they are guided through proofs, constructions, and solutions to problems. The text frequently emphasizes strategies and heuristics of problem solving including constructing proofs (Where to begin? How to proceed? Which approach is more promising? Are there multiple solutions/proofs? etc.). This approach aims not only to enable students to successfully solve unfamiliar problems on their own, but also to impart a lasting appreciation for mathematics.The text first explores, at a higher level and in much greater depth, topics that are normally taught in high school geometry courses: definitions and axioms, congruence, circles and related concepts, area and the Pythagorean theorem, similarity, isometries and size transformations, and composition of transformations. Constructions and the use of transformations to carry out constructions are emphasized. The text then introduces more advanced topics dealing with non-Euclidean and less commonly taught topics such as inversive, hyperbolic, elliptic, taxicab, fractal, and solid geometries. By examining what happens when one or more of the building blocks of Euclidean geometry are altered, students will gain a deeper understanding of and appreciation for Euclidean concepts.To accommodate students with different levels of experience in the subject, the basic definitions and axioms that form the foundation of Euclidean geometry are covered in Chapter 1. Problem sets are provided after every section in each chapter and include nonroutine problems that students will enjoy exploring. While not necessarily required, the appropriate use of freely available dynamic geometry software and other specialized software referenced in the text is strongly encouraged; this is especially important for visual learners and for forming conjectures and testing hypotheses. This undergraduate textbook provides a comprehensive treatment of Euclidean and transformational geometries, supplemented by substantial discussions of topics from various non-Euclidean and less commonly taught geometries, making it ideal for both mathematics majors and pre-service teachers. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783031741524
Anzahl: 1 verfügbar