In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs («expanders»). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdan’s property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
From reviews:
"This exciting book marks the genesis of a new field. It is a field in which one passes back and forth at will through the looking glass dividing the discrete from the continuous. (...) The book is a charming combination of topics from group theory (finite and infinite), combinatorics, number theory, harmonic analysis." - Zentralblatt MATH
"The Appendix, written by J. Rogawski, explains the Jacquet-Langlands theory and indicates Deligne’s proof of the Petersson-Ramanujan conjecture. It would merit its own review. (...) In conclusion, this is a wonderful way of transmitting recent mathematical research directly "from the producer to the consumer". - MathSciNet
"The book is accessible to mature graduate students in mathematics and theoretical computer science. It is a nice presentation of a gem at the border of analysis, geometry, algebra and combinatorics. Those who take the effort to glance what happens behind the scene won’t regret it." - Acta Scientiarum Mathematicarum
Unifying concepts from various fields within mathematics, this volume offers solutions to two known problems – the construction of expanding graphs and the Ruziewicz problem, concerning the finitely additive invariant measures of spheres.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 2,25 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783034603317
Anzahl: 2 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 7629513-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020037581
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. One problem is the - plicit construction of expanding graphs (expanders). These are highly connected sparse graphs whose existence can be easily demonstrated but whose explicit c- struction turns out to be a dif?cult task. Since expanders serve as basic building blocks for various distributed networks, an explicit construction is highly des- able. The other problem is one posed by Ruziewicz about seventy years ago and studied by Banach [Ba]. It asks whether the Lebesgue measure is the only ?nitely additive measure of total measure one, de?ned on the Lebesgue subsets of the n-dimensional sphere and invariant under all rotations. The two problems seem, at ?rst glance, totally unrelated. It is therefore so- what surprising that both problems were solved using similar methods: initially, Kazhdans property (T) from representation theory of semi-simple Lie groups was applied in both cases to achieve partial results, and later on, both problems were solved using the (proved) Ramanujan conjecture from the theory of automorphic forms. The fact that representation theory and automorphic forms have anything to do with these problems is a surprise and a hint as well that the two questions are strongly related. In the last ?fteen years two seemingly unrelated problems, one in computer science and the other in measure theory, were solved by amazingly similar techniques from representation theory and from analytic number theory. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783034603317
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 7629513
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783034603317_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783034603317
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 7629513-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 206. Bestandsnummer des Verkäufers 261368101
Anzahl: 4 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 7629513
Anzahl: Mehr als 20 verfügbar