This book gives an exposition of the fundamentals of the theory of linear representations of ?nite and compact groups, as well as elements of the t- ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the ?eld under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of ?nite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely - pliedbranchesof algebra. Practically every timethatgroupsareencountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. 0. Basic Notions 0. 1.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Ernest B. Vinberg is a Professor of mathematics at the Moscow University.
This textbook contains a comprehensive and detailed exposition of the fundamentals of the representation theory of groups, especially of finite groups and compact groups. The exposition is based on the decomposition of the two-sided regular representation. This enables the author to give not only an abstract description of the representations but also their realizations in function spaces, which is important for physical applications. As an example, the theory of Laplace spherical functions is treated. Some basic ideas of the representation theory of Lie groups are also given, as well as all the representations of the groups SU2 and SO3. The book contains numerous examples and exercises, some with solutions.
------ Reviews
This book is a short modern introduction to representation theory of groups. ( ) Basic examples and exercises enable the reader to change over to explicit calculations.
- Zentralblatt MATH
This is a short and very readable introduction to finite-dimensional representation theory. A preliminary chapter gives the general flavor of the theory describing many examples and emphasizing the harmonic analysis aspects. ( ) There are many exercises in the text; at the end of the book there is a list of some answers and solutions. ( ) Even though the book is very short, its exposition is clear and unhurried. By concentrating on essential matters the author succeeds in getting across many of the fundamental ideas of the theory.
- Mathematical Reviews
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 105,00 für den Versand von Deutschland nach USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783034800624
Anzahl: 2 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020037625
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783034800624_new
Anzahl: Mehr als 20 verfügbar
Anbieter: California Books, Miami, FL, USA
Zustand: New. Bestandsnummer des Verkäufers I-9783034800624
Anzahl: Mehr als 20 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Brief, modern and very readable introduction to representation theory of groupsClear and concentrating on the essentialsProvides numerous examples and exercises, some with solutionsErnest B. Vinberg is a Professor of m. Bestandsnummer des Verkäufers 4318098
Anzahl: Mehr als 20 verfügbar
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Bestandsnummer des Verkäufers 9529861/12
Anzahl: 1 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Neuware - This book gives an exposition of the fundamentals of the theory of linear representations of nite and compact groups, as well as elements of the t- ory of linear representations of Lie groups. As an application we derive the Laplace spherical functions. The book is based on lectures that I delivered in the framework of the experimental program at the Mathematics-Mechanics Faculty of Moscow State University and at the Faculty of Professional Skill Improvement. My aim has been to give as simple and detailed an account as possible of the problems considered. The book therefore makes no claim to completeness. Also, it can in no way give a representative picture of the modern state of the eld under study as does, for example, the monograph of A. A. Kirillov [3]. For a more complete acquaintance with the theory of representations of nite groups we recommend the book of C. W. Curtis and I. Reiner [2], and for the theory of representations of Lie groups, that of M. A. Naimark [6]. Introduction The theory of linear representations of groups is one of the most widely - pliedbranchesof algebra. Practically every timethatgroupsareencountered, their linear representations play an important role. In the theory of groups itself, linear representations are an irreplaceable source of examples and a tool for investigating groups. In the introduction we discuss some examples and en route we introduce a number of notions of representation theory. 0. Basic Notions 0. 1. Bestandsnummer des Verkäufers 9783034800624
Anzahl: 2 verfügbar