Verwandte Artikel zu Symplectic Geometry of Integrable Hamiltonian Systems

Symplectic Geometry of Integrable Hamiltonian Systems - Softcover

 
9783034880725: Symplectic Geometry of Integrable Hamiltonian Systems

Zu dieser ISBN ist aktuell kein Angebot verfügbar.

Inhaltsangabe

A Lagrangian Submanifolds.- I Lagrangian and special Lagrangian immersions in C".- I.1 Symplectic form on C", symplectic vector spaces.- Ll.a Symplectic vector spaces.- I.l.b Symplectic bases.- I.l.c The symplectic form as a differential form.- I.l.d The symplectic group.- I.l.e Orthogonality, isotropy.- 1.2 Lagrangian subspaces.- I.2.a Definition of Lagrangian subspaces.- I.2.b The symplectic reduction.- 1.3 The Lagrangian Grassmannian.- I.3.a The Grassmannian A"t as a homogeneous space.- I.3.b The manifold An.- I.3.c The tautological vector bundle.- I.3.d The tangent bundle to A".- I.3.e The case of oriented Lagrangian subspaces.- I.3.f The determinant and the Maslov class.- I.4 Lagrangian submanifolds in Cn.- I.4.a Lagrangian submanifolds described by functions.- I.4.b Wave fronts.- I.4.c Other examples.- I.4.d The Gauss map.- I.5 Special Lagrangian submanifolds in Cn.- I.5.a Special Lagrangian subspaces.- I.5.b Special Lagrangian submanifolds.- I.5.c Graphs of forms.- I.5.d Normal bundles of surfaces.- I.5.e From integrable systems.- I.5.f Special Lagrangian submanifolds invariant under SO(n)..- I.6 Appendices.- I.6.a The topology of the symplectic group.- I.6.b Complex structures.- I.6.c Hamiltonian vector fields, integrable systems.- Exercises.- II Lagrangian and special Lagrangian submanifolds in symplectic and Calabi-Yau manifolds.- II.1 Symplectic manifolds.- II.2 Lagrangian submanifolds and immersions.- II.2.a In cotangent bundles.- I1.3 Tubular neighborhoods of Lagrangian submanifolds.- II.3.a Moser's method.- II.3.b Tubular neighborhoods.- II.3.c"Moduli space" of Lagrangian submanifolds.- II.4 Calabi-Yau manifolds.- II.4.a Definition of the Calabi-Yau manifolds.- II.4.b Yau's theorem.- II.4.c Examples of Calabi-Yau manifolds.- II.4.d Special Lagrangian submanifolds.- II.5 Special Lagrangians in real Calabi-Yau manifolds.- II.5.a Real manifolds.- II.5.b Real Calabi-Yau manifolds.- II.5.c The example of elliptic curves 68.- II.5.d Special Lagrangians in real Calabi-Yau manifolds.- 11.6 Moduli space of special Lagrangian submanifolds.- I1.7 Towards mirror symmetry?.- II.7.a Fibrations in special Lagrangian submanifolds 74.- II.7.b Mirror symmetry.- Exercises.- B Symplectic Toric Manifolds.- I Symplectic Viewpoint.- I.1 Symplectic Toric Manifolds.- I.1.1 Symplectic Manifolds.- I.1.2 Hamiltonian Vector Fields.- I.1.3 Integrable Systems.- I.1.4 Hamiltonian Actions.- I.1.5 Hamiltonian Torus Actions.- 1.1.6 Symplectic Toric Manifolds.- I.2 Classification.- 1.2.1 Delzant's Theorem.- I.2.2 Orbit Spaces.- I.2.3 Symplectic Reduction.- I.2.4 Extensions of Symplectic Reduction.- I.2.5 Delzant's Construction.- I.2.6 Idea Behind Delzant's Construction.- I.3 Moment Polytopes.- I.3.1 Equivariant Darboux Theorem.- I.3.2 Morse Theory.- I.3.3 Homology of Symplectic Toric Manifolds.- I.3.4 Symplectic Blow-Up.- I.3.5 Blow-Up of Toric Manifolds.- I.3.6 Symplectic Cutting.- II Algebraic Viewpoint.- II.1 Toric Varieties.- II.1.1 Affine Varieties.- II.1.2 Rational Maps on Affine Varieties.- II.1.3 Projective Varieties.- II.1.4 Rational Maps on Projective Varieties.- II.1.5 Quasiprojective Varieties.- II.1.6 Toric Varieties.- II.2 Classification.- 1I.2.1 Spectra.- II.2.2 Toric Varieties Associated to Semigroups.- I1.2.3 Classification of Affine Toric Varieties.- II.2.4 Fans.- 1I.2.5 Toric Varieties Associated to Fans.- 1I.2.6 Classification of Normal Toric Varieties.- I1.3 Moment Polytopes.- II.3.1 Equivariantly Projective Toric Varieties.- II.3.2 Weight Polytopes.- II.3.3 Orbit Decomposition.- II.3.4 Fans from Polytopes.- II.3.5 Classes of Toric Varieties.- II.3.6 Symplectic vs. Algebraic.- C Geodesic Flows and Contact Toric Manifolds.- I From toric integrable geodesic flows to contact toric manifolds.- I.1 Introduction.- 1.2 Symplectic cones and contact manifolds.- II Contact group actions and contact moment maps.- III Proof of Theorem I.38.- III.1 Homogeneous vector bundles and slices.- III.2 The 3-dimensional case.- III.3 Uniqueness

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagBirkhäuser
  • Erscheinungsdatum2011
  • ISBN 10 3034880723
  • ISBN 13 9783034880725
  • EinbandPaperback
  • SpracheEnglisch
  • Kontakt zum HerstellerNicht verfügbar

(Keine Angebote verfügbar)

Buch Finden:



Kaufgesuch aufgeben

Sie finden Ihr gewünschtes Buch nicht? Wir suchen weiter für Sie. Sobald einer unserer Buchverkäufer das Buch bei AbeBooks anbietet, werden wir Sie informieren!

Kaufgesuch aufgeben

Weitere beliebte Ausgaben desselben Titels

9783764321673: Symplectic Geometry of Integrable Hamiltonian Systems (Advanced Courses in Mathematics - CRM Barcelona)

Vorgestellte Ausgabe

ISBN 10:  3764321679 ISBN 13:  9783764321673
Verlag: Springer, 2008
Softcover