This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics.
There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction.
This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Maria Han Veiga,
Assistant professor of mathematics, Ohio State University, Ohio, USA
Prior to joining Ohio State, she was a postdoctoral fellow at the University of Michigan in Mathematics and Data Science (MIDAS). She obtained her PhD at the University of Zurich. Her research focuses on numerical analysis for hyperbolic partial differential equations and scientific machine learning.
Dr. François Ged
Postdoctoral fellow, University of Vienna, Austria
He obtained his PhD in Mathematics at the University of Zurich, Switzerland, after which he was a postdoc fellow at the École Polytechnique Fédérale de Lausanne. His research interests gravitate around the theory of deep learning and reinforcement learning, as well as mathematical population genetics and growth-fragmentation processes.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 47496994-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BargainBookStores, Grand Rapids, MI, USA
Paperback or Softback. Zustand: New. The Mathematics of Machine Learning: Lectures on Supervised Methods and Beyond. Book. Bestandsnummer des Verkäufers BBS-9783111288475
Anbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783111288475
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: As New. Unread book in perfect condition. Bestandsnummer des Verkäufers 47496994
Anzahl: Mehr als 20 verfügbar
Anbieter: Rarewaves USA, OSWEGO, IL, USA
Paperback. Zustand: New. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Bestandsnummer des Verkäufers LU-9783111288475
Anzahl: Mehr als 20 verfügbar
Anbieter: Grand Eagle Retail, Bensenville, IL, USA
Paperback. Zustand: new. Paperback. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Introduces machine learning, with a strong focus on the mathematics underlying many of the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. This book's objective is to rigoro Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783111288475
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. Bestandsnummer des Verkäufers 26398823820
Anbieter: Rarewaves.com USA, London, LONDO, Vereinigtes Königreich
Paperback. Zustand: New. This book is an introduction to machine learning, with a strong focus on the mathematics behind the standard algorithms and techniques in the field, aimed at senior undergraduates and early graduate students of Mathematics. There is a focus on well-known supervised machine learning algorithms, detailing the existing theory to provide some theoretical guarantees, featuring intuitive proofs and exposition of the material in a concise and precise manner. A broad set of topics is covered, giving an overview of the field. A summary of the topics covered is: statistical learning theory, approximation theory, linear models, kernel methods, Gaussian processes, deep neural networks, ensemble methods and unsupervised learning techniques, such as clustering and dimensionality reduction. This book is suited for students who are interested in entering the field, by preparing them to master the standard tools in Machine Learning. The reader will be equipped to understand the main theoretical questions of the current research and to engage with the field. Bestandsnummer des Verkäufers LU-9783111288475
Anzahl: Mehr als 20 verfügbar
Anbieter: PBShop.store UK, Fairford, GLOS, Vereinigtes Königreich
PAP. Zustand: New. New Book. Shipped from UK. Established seller since 2000. Bestandsnummer des Verkäufers DB-9783111288475
Anzahl: 3 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 397553235
Anzahl: 1 verfügbar