The usual "implementation? of real numbers as floating point numbers on existing computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. During the last years research in different areas has been intensified in order to overcome these problems. (Leda-Library by K. Mehlhorn et al., "Exact arithmetic with real numbers? by A. Edalat et al., Symbolic algebraic methods, verification methods). The latest development is the combination of symbolic-algebraic methods and verification methods to so-called hybrid methods. ? This book contains a collection of worked out talks on these subjects given during a Dagstuhl seminar at the Forschungszentrum für Informatik, Schloß Dagstuhl, Germany, presenting the state of the art.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
The usual usual "implementation" "implementation" ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for "exact arithmetic with real numbers" (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented.
The usual 'implementation' of real numbers as floating point numbers on existing computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. During the last years research in different areas has been intensified in order to overcome these problems (LEDA-Library by K. Mehlhorn et al., 'Exact arithmetic with real numbers' by A. Edalat et al., Symbolic algebraic methods, and verification methods). The latest development is the combination of symbolic-algebraic methods and verification methods to so-called hybrid methods. This book contains a collection of worked out talks on these subjects given during a Dagstuhl seminar at the Forschungszentrum fur Informatik, Schloss Dagstuhl, Germany, presenting the state of the art.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020085406
Anzahl: Mehr als 20 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 915402-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Bestandsnummer des Verkäufers ria9783211835937_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Chiron Media, Wallingford, Vereinigtes Königreich
Paperback. Zustand: New. Bestandsnummer des Verkäufers 6666-IUK-9783211835937
Anzahl: 10 verfügbar
Anbieter: GreatBookPricesUK, Woodford Green, Vereinigtes Königreich
Zustand: New. Bestandsnummer des Verkäufers 915402-n
Anzahl: Mehr als 20 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented. 280 pp. Englisch. Bestandsnummer des Verkäufers 9783211835937
Anzahl: 2 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 1st edition. 266 pages. 9.75x6.75x0.50 inches. In Stock. Bestandsnummer des Verkäufers x-3211835938
Anzahl: 2 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Introduction (G. Alefeld, J. Rohn, S. Rump, T. Yamamoto).- Topological Concepts for Hierarchies of Variables, Types and Controls (R. Albrecht).- Modifications of the Oettli-Prager Theorem with Application to the Eigenvalue Problem (G. Alefeld, V. Kreinovich. Bestandsnummer des Verkäufers 4489163
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented. 280 pp. Englisch. Bestandsnummer des Verkäufers 9783211835937
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The usual usual 'implementation' 'implementation' ofreal numbers as floating point numbers on exist iing ng computers computers has the well-known disadvantage that most of the real numbers are not exactly representable in floating point. Also the four basic arithmetic operations can usually not be performed exactly. For numerical algorithms there are frequently error bounds for the computed approximation available. Traditionally a bound for the infinity norm is estima ted using ttheoretical heoretical ccoonncceeppttss llike ike the the condition condition number number of of a a matrix matrix for for example. example. Therefore Therefore the error bounds are not really available in practice since their com putation requires more or less the exact solution of the original problem. During the last years research in different areas has been intensified in or der to overcome these problems. As a result applications to different concrete problems were obtained. The LEDA-library (K. Mehlhorn et al.) offers a collection of data types for combinatorical problems. In a series of applications, where floating point arith metic fails, reliable results are delivered. Interesting examples can be found in classical geometric problems. At the Imperial College in London was introduced a simple principle for 'exact arithmetic with real numbers' (A. Edalat et al.), which uses certain nonlinear transformations. Among others a library for the effective computation of the elementary functions already has been implemented. Bestandsnummer des Verkäufers 9783211835937
Anzahl: 1 verfügbar