Verwandte Artikel zu Analytic Capacity, the Cauchy Transform, and Non-homogeneous...

Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory: 307 (Progress in Mathematics) - Hardcover

 
9783319005959: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón-Zygmund Theory: 307 (Progress in Mathematics)

Inhaltsangabe

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Xavier Tolsa is Research Professor of Mathematics from ICREA - Universitat Autònoma de Barcelona. He is the author of many research papers in connection with the topics discussed in this book. The present monograph was awarded the 2013 Ferran Sunyer i Balaguer Prize.

Von der hinteren Coverseite

This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995 2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9783319345444: Analytic Capacity, the Cauchy Transform, and Non-homogeneous Calderón–Zygmund Theory: 307 (Progress in Mathematics)

Vorgestellte Ausgabe

ISBN 10:  3319345443 ISBN 13:  9783319345444
Verlag: Birkhäuser, 2016
Softcover

Suchergebnisse für Analytic Capacity, the Cauchy Transform, and Non-homogeneous...

Foto des Verkäufers

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Gebunden. Zustand: New. Bestandsnummer des Verkäufers 4495891

Verkäufer kontaktieren

Neu kaufen

EUR 92,27
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation,he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers. Bestandsnummer des Verkäufers 9783319005959

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995¿2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation,he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin¿s conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers.Springer Basel AG in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 412 pp. Englisch. Bestandsnummer des Verkäufers 9783319005959

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Xavier Tolsa
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover
Print-on-Demand

Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book studies some of the groundbreaking advances that have been made regarding analytic capacity and its relationship to rectifiability in the decade 1995-2005. The Cauchy transform plays a fundamental role in this area and is accordingly one of the main subjects covered. Another important topic, which may be of independent interest for many analysts, is the so-called non-homogeneous Calderón-Zygmund theory, the development of which has been largely motivated by the problems arising in connection with analytic capacity. The Painlevé problem, which was first posed around 1900, consists in finding a description of the removable singularities for bounded analytic functions in metric and geometric terms. Analytic capacity is a key tool in the study of this problem. In the 1960s Vitushkin conjectured that the removable sets which have finite length coincide with those which are purely unrectifiable. Moreover, because of the applications to the theory of uniform rational approximation, he posed the question as to whether analytic capacity is semiadditive. This work presents full proofs of Vitushkin's conjecture and of the semiadditivity of analytic capacity, both of which remained open problems until very recently. Other related questions are also discussed, such as the relationship between rectifiability and the existence of principal values for the Cauchy transforms and other singular integrals. The book is largely self-contained and should be accessible for graduate students in analysis, as well as a valuable resource for researchers. 412 pp. Englisch. Bestandsnummer des Verkäufers 9783319005959

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Xavier Tolsa
Verlag: Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover

Anbieter: Books Puddle, New York, NY, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 412. Bestandsnummer des Verkäufers 2697853923

Verkäufer kontaktieren

Neu kaufen

EUR 147,97
Währung umrechnen
Versand: EUR 7,74
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tolsa Xavier
Verlag: Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover
Print-on-Demand

Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. PRINT ON DEMAND pp. 412. Bestandsnummer des Verkäufers 1897853929

Verkäufer kontaktieren

Neu kaufen

EUR 156,61
Währung umrechnen
Versand: EUR 2,30
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tolsa Xavier
Verlag: Springer, 2014
ISBN 10: 3319005952 ISBN 13: 9783319005959
Neu Hardcover
Print-on-Demand

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Print on Demand pp. 412 8 Illus. Bestandsnummer des Verkäufers 94543420

Verkäufer kontaktieren

Neu kaufen

EUR 153,97
Währung umrechnen
Versand: EUR 10,18
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb