Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning: From Sub-Riemannian Geometry to Motion Planning (SpringerBriefs in Mathematics) - Softcover

Buch 48 von 155: SpringerBriefs in Mathematics

Jean, Frédéric

 
9783319086897: Control of Nonholonomic Systems: from Sub-Riemannian Geometry to Motion Planning: From Sub-Riemannian Geometry to Motion Planning (SpringerBriefs in Mathematics)

Inhaltsangabe

Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

Nonholonomic systems are control systems which depend linearly on the control. Their underlying geometry is the sub-Riemannian geometry, which plays for these systems the same role as Euclidean geometry does for linear systems. In particular the usual notions of approximations at the first order, that are essential for control purposes, have to be defined in terms of this geometry. The aim of these notes is to present these notions of approximation and their application to the motion planning problem for nonholonomic systems.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.