This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use physics-based models as a means of introducinga priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 28,66 für den Versand von Vereinigtes Königreich nach USA
Versandziele, Kosten & DauerEUR 7,65 für den Versand innerhalb von/der USA
Versandziele, Kosten & DauerAnbieter: Best Price, Torrance, CA, USA
Zustand: New. SUPER FAST SHIPPING. Bestandsnummer des Verkäufers 9783319175560
Anzahl: 1 verfügbar
Anbieter: GreatBookPrices, Columbia, MD, USA
Zustand: New. Bestandsnummer des Verkäufers 23517348-n
Anzahl: Mehr als 20 verfügbar
Anbieter: Lucky's Textbooks, Dallas, TX, USA
Zustand: New. Bestandsnummer des Verkäufers ABLIING23Mar3113020090147
Anzahl: 1 verfügbar
Anbieter: Books Puddle, New York, NY, USA
Zustand: New. pp. 113. Bestandsnummer des Verkäufers 26372447343
Anzahl: 4 verfügbar
Anbieter: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Deutschland
Taschenbuch. Zustand: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer. 124 pp. Englisch. Bestandsnummer des Verkäufers 9783319175560
Anzahl: 2 verfügbar
Anbieter: Grand Eagle Retail, Mason, OH, USA
Paperback. Zustand: new. Paperback. This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use of physics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Bestandsnummer des Verkäufers 9783319175560
Anzahl: 1 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. Print on Demand pp. 113. Bestandsnummer des Verkäufers 373598128
Anzahl: 4 verfügbar
Anbieter: Biblios, Frankfurt am main, HESSE, Deutschland
Zustand: New. PRINT ON DEMAND pp. 113. Bestandsnummer des Verkäufers 18372447333
Anzahl: 4 verfügbar
Anbieter: moluna, Greven, Deutschland
Zustand: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Represents the first unified approach to model-based array processingPresents experimentally verified examplesSufficiently self-contained to allow use by practicing engineers and researchersIncludes an extensive reference list for fu. Bestandsnummer des Verkäufers 31551748
Anzahl: Mehr als 20 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This monograph presents a unified approach to model-based processing for underwater acoustic arrays. The use of physical models in passive array processing is not a new idea, but it has been used on a case-by-case basis, and as such, lacks any unifying structure. This work views all such processing methods as estimation procedures, which then can be unified by treating them all as a form of joint estimation based on a Kalman-type recursive processor, which can be recursive either in space or time, depending on the application. This is done for three reasons. First, the Kalman filter provides a natural framework for the inclusion of physical models in a processing scheme. Second, it allows poorly known model parameters to be jointly estimated along with the quantities of interest. This is important, since in certain areas of array processing already in use, such as those based on matched-field processing, the so-called mismatch problem either degrades performance or, indeed, prevents any solution at all. Thirdly, such a unification provides a formal means of quantifying the performance improvement. The term model-based will be strictly defined as the use ofphysics-based models as a means of introducing a priori information. This leads naturally to viewing the method as a Bayesian processor. Short expositions of estimation theory and acoustic array theory are presented, followed by a presentation of the Kalman filter in its recursive estimator form. Examples of applications to localization, bearing estimation, range estimation and model parameter estimation are provided along with experimental results verifying the method. The book is sufficiently self-contained to serve as a guide for the application of model-based array processing for the practicing engineer.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 124 pp. Englisch. Bestandsnummer des Verkäufers 9783319175560
Anzahl: 2 verfügbar